6...8...5.4...128..8.....6...7..23.....5.8.....17......6.....4...43...2.3...9...6
b4 - 8 Locked Candidate (1)
b6 - 5 Locked Candidate (1)
b6 - 8 Locked Candidate (1)
c8 - 9 Locked Candidate (2)
Locked Column Line/Box: r46c1 => r78c1<>8
Locked Column Line/Box: r46c8 => r9c8<>5
Locked Column Line/Box: r46c9 => r8c9<>8
Locked Column Box/Box: r137c7|r238c9 => r5c7<>9,r456c9<>9
r3c1 <> 5 Templates (A)
Column Swordfish Fillet-o-Fish: r2379c3|r379c6|r79c7 => r3c1<>5
r3c6 <> 4 Forcing Chain/Net on [r8c5]
r6c6 <> 4 Forcing Chain/Net on [r8c5]
r7c5 <> 5 Forcing Chain/Net on [r8c5]
r9c2 <> 5 Forcing Chain/Net on [r8c5]
A=2 cell ALS xz-rule: r1c34-9-r179c6 => r3c6<>4
A=2 cell ALS xz-rule: r56c5-1-r8c5|r79c6 => r6c6<>4
B=2 cell ALS xy-rule: r179c6-9-r13c4-2-r234568c5 => r7c5<>5
4-element Grouped Nice Loop: r4c2-9-r4c4=9=r6c6-9-ALS:r179c6-5-r8c5=5=r8c12~5~ => r9c2<>5
r6c8 = 5 Forcing Chain/Net on [r6c6]
Bivalued Kraken House (SUM Exclusion) (r5c2|r5c1-9-r4c2-5-, r5c8-9-r6c8-5-): r5c128 => r4c8<>5,r6c21<>5
r2c4 = 6 Forcing Chain/Net on [r2c1]
r4c5 = 6 Forcing Chain/Net on [r2c1]
Multiple 4-element Grouped Nice Loop: ALS:r2c19-5-r23c3=5=r79c3-5-r8c12=5=r8c5-5-ALS:r179c6~7~ => r2c4<>9
r1c2 <> 9 Templates (A)
r3c1 <> 9 Templates (A)
Bivalued Kraken House (SUM Exclusion) (r8c2-9-r456c2=9=r456c1-9-, r8c9-9-r2c9=9=r2c13-9-): r8c129 => r3c1|r1c2<>9
r3c3 <> 2 Forcing Chain/Net on [r2c5]
Overlap 4-element Grouped Nice Loop: r1c3-9-ALS:r179c6-5-r8c5=5=r8c12-5-ALS:r179c3~2~ => r3c3<>2
r9c7 <> 1 Forcing Chain/Net on [r1c7]
Bivalued Kraken House (SUM Exclusion) (r1c2=1=r1c7-1-, r1c6-7-r7c6-5-r7c7|r9c8|r8c9-1-, r1c7-7-r2c9-9-r9c8|r8c9-1-): r1c267 => r9c7<>1
r9c3 <> 5 Forcing Chain/Net on [r2c1]
(none)
r4c9 <> 1 Forcing Chain/Net on [r3c9]
3-element Grouped Nice Loop: ALS:r4c48-4-r56c5=4=r3c5-4-ALS:r238c9~1~ => r4c9<>1
gurth wrote:But sooner or later the deduction must be made, otherwise the chain is meaningless. And the only DEDUCTION that can be made from a strong inference is this: "if A is false, then B is true."
We cannot logically dispense with the assumption of a false statement
gurth wrote:In the case of a STRONG INFERENCE, we examine the consequences of the assumption of a statement A being false, without implying that the assumption itself is true or false.
gurth wrote:I hope you now understand what I mean. I am sure there is no disagreement between us about how AIC chains work, it is just a matter of preferred terminology. Whether or not there is any less "bifurcation" in an AIC than in a Forcing Net, is another matter. I would say not.
Mike Barker wrote:Thanks Daj. When I was first programming up grouped nice loops I moved them right after singles in my solver. Not surprisingly these were the only techniques which were used in solutions besides a few unique rectangles. Forcing chains take the solving power up one level and for those that can employ them allow solutions to problems I'll probably never be able to touch. Its not surprising that forcing chains can solve U#24. What was surprising and rather cool was that the forcing chain and Kraken eliminations were so close.
So what's the difference? I could move grouped strong links back up to the top of my solving list, but just having solved a puzzle is only part of the challenge. I actually find application of the different logical techniques to solve a puzzle as something rather beautiful and creating new techniques as pleasurable. It is also useful, in that, saying an X-wing or ALS or even a Kraken Blossom has solved a puzzle says a lot more than it was solved with a forcing chain. Besides there's always a chance that a new / more powerful technique will be discovered. I keep trying out new techniques in my solver to see what they can do which is why I have so many. They are not needed, but you never know where an idea like SHuisman's APE extension or Anne Morelot's fish elimination might lead. Besides if you've ever visited the zoo there are a lot of colorful critters there.
Row Finned X-Wing: r6c59|r9c579 => r8c9<>5
B=1 cell ALS xy-rule: r7c4-6-r3c4-5-r137c5 => r9c5<>7
A=2 cell ALS xz-rule: r69c8-2-r4c189 => r9c1<>8
Overlap 4-element Grouped Nice Loop: ALS:r69c1-7-r2c1=7=r2c6-7-r5c6-5-ALS:r6c1258~9~ => r5c1<>9
+-----------------------+------------------+----------------------+
| 5 3479 479 | 8 679 2 | 1 346 3469 |
| 379* 6 2 | 1 4 379* | 39 5 8 |
| 1 3489 489 | 56 569 359 | 3469 7 2 |
+-----------------------+------------------+----------------------+
| 348 2348 5 | 9 1 6 | 7 234 34 |
| 3467-9 23479 4679 | 257 8 57* | 234569 1 34569 |
| 679*b 279*b 1 | 3 257*b 4 | 8 26*b 569 |
+-----------------------+------------------+----------------------+
| 2 5 46789 | 67 679 789 | 346 3468 1 |
| 4678 1 4678 | 2567 3 578 | 2456 9 467 |
| 679* 789 3 | 4 2569 1 | 256 268 567 |
+-----------------------+------------------+----------------------+
Bivalued/1-element Kraken Row Swordfish (r269/c12, fins=r2c6|r6c5|r9c9) (r2c6-7-r5c6-5-, r6c5=5=r6c9-5-, r9c9=5=r56c9-5-): r2c16|r6c125|r9c129=7 => r5c7<>5
+---------------------+------------------+-----------------------+
| 5 3479 479 | 8 679 2 | 1 346 3469 |
| 379* 6 2 | 1 4 379* | 39 5 8 |
| 1 3489 489 | 56 569 359 | 3469 7 2 |
+---------------------+------------------+-----------------------+
| 348 2348 5 | 9 1 6 | 7 234 34 |
| 3467 23479 4679 | 257 8 57b | 23469-5 1 34569d |
| 679* 279* 1 | 3 257*c 4 | 8 26 569cd |
+---------------------+------------------+-----------------------+
| 2 5 46789 | 67 679 789 | 346 3468 1 |
| 4678 1 4678 | 2567 3 578 | 2456 9 467 |
| 679* 789* 3 | 4 2569 1 | 256 268 567*d |
+---------------------+------------------+-----------------------+
Locked Column Line/Box: r56c9 => r9c9<>5
3-element Grouped Nice Loop: ALS:r7c456-8-r7c8=8=r9c8-8-ALS:r9c129~6~ => r9c5<>6,r7c3<>9,r9c5<>9
+----------------------+-------------------+---------------------+
| 5 3479 479 | 8 679 2 | 1 346 3469 |
| 379 6 2 | 1 4 379 | 39 5 8 |
| 1 3489 489 | 56 569 359 | 3469 7 2 |
+----------------------+-------------------+---------------------+
| 348 2348 5 | 9 1 6 | 7 234 34 |
| 3467 23479 4679 | 257 8 57 | 23469 1 34569 |
| 679 279 1 | 3 257 4 | 8 26 569 |
+----------------------+-------------------+---------------------+
| 2 5 4678-9 | 67* 679* 789* | 346 3468* 1 |
| 4678 1 4678 | 2567 3 578 | 2456 9 467 |
| 679*b 789*b 3 | 4 25-69 1 | 256 268* 67*b |
+----------------------+-------------------+---------------------+
3-element Nice Loop: r8c4=2=r8c7=5=r9c7-5-r9c5-2-r8c4 => r8c7=25
5-element Strong Nice Loop: r2c1=7=r2c6-7-r5c6-5-r6c5=5=r6c9=9=r6c12-9-r5c3=9=r13c3~9~r2c1 => r2c1<>9
UR+3N/2SL (3,9): r23c67 => r3c7<>9
3-valued/2-element Kraken Row (r1c5=7=r2c6-7-r2c1-3-, r1c8-6-r6c8-2-r4c89-3-, r1c9-6-r89c9-4-r4c9-3-): r1c589=6 => r4c1<>3
+--------------------+------------------+---------------------+
| 5 3479 479 | 8 679*b 2 | 1 346* 3469* |
| 37b 6 2 | 1 4 379b | 39 5 8 |
| 1 3489 489 | 56 569 359 | 346 7 2 |
+--------------------+------------------+---------------------+
| 48-3 2348 5 | 9 1 6 | 7 234c 34cd |
| 3467 23479 4679 | 257 8 57 | 23469 1 34569 |
| 679 279 1 | 3 257 4 | 8 26c 569 |
+--------------------+------------------+---------------------+
| 2 5 4678 | 67 679 789 | 346 3468 1 |
| 4678 1 4678 | 2567 3 578 | 25 9 467d |
| 679 789 3 | 4 25 1 | 256 268 67d |
+--------------------+------------------+---------------------+
B=2 cell ALS xy-rule: r1489c9-9-r2c17-7-r45689c1 => r5c9<>3
4-valued/2-element Kraken Blossom (r5c7-2-r5c4=2=r8c4=6=r7c45-6-, r5c7-3-r4c89-2-r6c8-6-, r5c7-4-r4c89-2-r6c8-6-, r5c7-6-r5c13=6=r6c1-6-r9c1=6=r9c789-6-, r5c7-9-r2c7-3-r7c7|r89c9-6-): r5c7=23469 => r7c8<>6
+--------------------+-----------------+---------------------+
| 5 3479 479 | 8 679 2 | 1 346 3469 |
| 37 6 2 | 1 4 379 | 39e 5 8 |
| 1 3489 489 | 56 569 359 | 346 7 2 |
+--------------------+-----------------+---------------------+
| 48 2348 5 | 9 1 6 | 7 234cd 34cd |
| 3467e 23479 4679e | 257b 8 57 | 23469* 1 4569 |
| 679e 279 1 | 3 257 4 | 8 26cd 569 |
+--------------------+-----------------+---------------------+
| 2 5 4678 | 67b 679b 789 | 346e 348-6 1 |
| 4678 1 4678 | 2567b 3 578 | 25 9 467e |
| 679e 789 3 | 4 25 1 | 256e 268e 67e |
+--------------------+-----------------+---------------------+
5-valued/2-element Kraken Blossom (r8c1-4-r7c3=4=r7c78-4-r89c9-6-, r8c1-6-r6c1=6=r5c13-6-, r8c1-7-r2c17-9-r1489c9-6-, r8c1-8-r4c1-4-r46c8|r4c9-6-): r8c1=4678 => r5c9<>6
+--------------------+-----------------+--------------------+
| 5 3479 479 | 8 679 2 | 1 346 3469d |
| 37d 6 2 | 1 4 379 | 39d 5 8 |
| 1 3489 489 | 56 569 359 | 346 7 2 |
+--------------------+-----------------+--------------------+
| 48e 2348 5 | 9 1 6 | 7 234e 34de |
| 3467c 23479 4679c | 257 8 57 | 23469 1 459-6 |
| 679c 279 1 | 3 257 4 | 8 26e 569 |
+--------------------+-----------------+--------------------+
| 2 5 4678b | 67 679 789 | 346b 348b 1 |
| 4678* 1 4678 | 2567 3 578 | 25 9 467bd |
| 679 789 3 | 4 25 1 | 256 268 67bd |
+--------------------+-----------------+--------------------+
5-valued/2-element Kraken Blossom (r1c3-4-r7c3=4=r8c13-4-r89c9-6-, r1c3-7-r2c17-9-r1489c9-6-, r1c3-9-r1489c9-6-): r1c3=479 => r6c9<>6
+--------------------+-----------------+--------------------+
| 5 3479 479* | 8 679 2 | 1 346 3469cd |
| 37c 6 2 | 1 4 379 | 39c 5 8 |
| 1 3489 489 | 56 569 359 | 346 7 2 |
+--------------------+-----------------+--------------------+
| 48 2348 5 | 9 1 6 | 7 234 34cd |
| 3467 23479 4679 | 257 8 57 | 23469 1 459 |
| 679 279 1 | 3 257 4 | 8 26 59-6 |
+--------------------+-----------------+--------------------+
| 2 5 4678b | 67 679 789 | 346 348 1 |
| 4678b 1 4678b | 2567 3 578 | 25 9 467bcd |
| 679 789 3 | 4 25 1 | 256 268 67bcd |
+--------------------+-----------------+--------------------+
Bivalued/2-element Kraken Row (r1c5=7=r2c6=9=r2c7-9-, r1c8-6-r6c8=6=r5c7=9=r2c7-9-): r1c589=6 => r1c9<>9
+--------------------+------------------+--------------------+
| 5 3479 479 | 8 679*b 2 | 1 346* 346-9* |
| 37 6 2 | 1 4 379b | 39bc 5 8 |
| 1 3489 489 | 56 569 359 | 346 7 2 |
+--------------------+------------------+--------------------+
| 48 2348 5 | 9 1 6 | 7 234 34 |
| 3467 23479 4679 | 257 8 57 | 23469c 1 459 |
| 679 279 1 | 3 257 4 | 8 26c 59 |
+--------------------+------------------+--------------------+
| 2 5 4678 | 67 679 789 | 346 348 1 |
| 4678 1 4678 | 2567 3 578 | 25 9 467 |
| 679 789 3 | 4 25 1 | 256 268 67 |
+--------------------+------------------+--------------------+
Hidden Column Pair: r56c9 => r5c9=59
Overlap 5-element Strong Nice Loop: r1c23=9=r1c5=7=r2c6-7-r5c6-5-r5c9-9-r5c3=9=r13c3~9~ => r3c2<>9
2-element Kraken Row Swordfish (r158/c93, fins=r1c58|r5c17|r8c14) (r1c5-6-r7c5=6=r78c4-6-r3c4-5-, r5c7|r1c8-6-r6c8-2-r6c5|r5c6-5-, r5c1=3=r2c1-3-r25c6-5-, r8c1-6-r269c1-3-r25c6-5-, r8c4-6-r7c5=6=r13c5-6-r3c4-5-): r1c589|r5c137|r8c1349=6 => r5c4<>5
+---------------------+--------------------+-----------------+
| 5 3479 479 | 8 679*e 2 | 1 346* 346* |
| 37de 6 2 | 1 4 37de | 9 5 8 |
| 1 348 489 | 56be 569e 359 | 346 7 2 |
+---------------------+--------------------+-----------------+
| 48 2348 5 | 9 1 6 | 7 234 34 |
| 3467*d 23479 4679* | 27-5 8 57cde | 2346* 1 59 |
| 679e 279 1 | 3 257c 4 | 8 26c 59 |
+---------------------+--------------------+-----------------+
| 2 5 4678 | 67b 679be 789 | 346 348 1 |
| 4678* 1 4678* | 2567*b 3 578 | 25 9 467* |
| 679e 789 3 | 4 25 1 | 256 268 67 |
+---------------------+--------------------+-----------------+
5-element Grouped Nice Loop: ALS:r7c456|r8c6-5-r5c6=5=r5c9=9=r6c9-9-r6c1=9=r9c1=6=r9c789~6~ => r7c7<>6
+--------------------+-----------------+------------------+
| 5 3479 479 | 8 679 2 | 1 346 346 |
| 37 6 2 | 1 4 37 | 9 5 8 |
| 1 348 489 | 56 569 359 | 346 7 2 |
+--------------------+-----------------+------------------+
| 48 2348 5 | 9 1 6 | 7 234 34 |
| 3467 23479 4679 | 27 8 57* | 2346 1 59* |
| 679* 279 1 | 3 257 4 | 8 26 59* |
+--------------------+-----------------+------------------+
| 2 5 4678 | 67* 679* 789* | 34-6 348 1 |
| 4678 1 4678 | 2567 3 578* | 25 9 467 |
| 679* 789 3 | 4 25 1 | 256*b 268*b 67*b |
+--------------------+-----------------+------------------+
5-element Grouped Nice Loop: r4c1=8=r8c1-8-ALS:r58c6-7-ALS:r23c6|r3c45-6-ALS:r37c7-4-r5c7=4=r5c123~4~r4c1 => r4c1<>4
+-----------------------+-------------------+-----------------+
| 5 3479 479 | 8 679 2 | 1 346 346 |
| 37 6 2 | 1 4 37*c | 9 5 8 |
| 1 348 489 | 56*c 569*c 359*c | 346*d 7 2 |
+-----------------------+-------------------+-----------------+
| 8-4* 2348 5 | 9 1 6 | 7 234 34 |
| 3467*e 23479*e 4679*e | 27 8 57*b | 2346* 1 59 |
| 679 279 1 | 3 257 4 | 8 26 59 |
+-----------------------+-------------------+-----------------+
| 2 5 4678 | 67 679 789 | 34*d 348 1 |
| 4678* 1 4678 | 2567 3 578*b | 25 9 467 |
| 679 789 3 | 4 25 1 | 256 268 67 |
+-----------------------+-------------------+-----------------+
3-element Grouped Nice Loop: ALS:r2689c1-4-ALS:r89c9|r9c78|r8c7-8-ALS:r14569c2~3~ => r3c2<>3
+---------------------+-----------------+-------------------+
| 5 3479*c 479 | 8 679 2 | 1 346 346 |
| 37* 6 2 | 1 4 37 | 9 5 8 |
| 1 48-3 489 | 56 569 359 | 346 7 2 |
+---------------------+-----------------+-------------------+
| 8 234*c 5 | 9 1 6 | 7 234 34 |
| 3467 23479*c 4679 | 27 8 57 | 2346 1 59 |
| 679* 279*c 1 | 3 257 4 | 8 26 59 |
+---------------------+-----------------+-------------------+
| 2 5 4678 | 67 679 789 | 34 348 1 |
| 467* 1 4678 | 2567 3 578 | 25*b 9 467*b |
| 679* 789*c 3 | 4 25 1 | 256*b 268*b 67*b |
+---------------------+-----------------+-------------------+
5-element Strong Nice Loop: r1c2=3=r2c1=7=r2c6-7-r5c6-5-r5c9-9-r5c3=9=r13c3~9~r1c2 => r1c2<>9
Locked Column Line/Box: r13c3 => r5c3<>9
Bivalued/2-element Kraken Column Swordfish (c137/r5b7, fins=r13c3|r37c7) (r1c3=9=r3c3=8=r3c2-8-, r3c3=8=r3c2-8-, r3c7-4-r1c89=4=r1c23-4-r3c2-8-, r7c7=3=r7c8=8=r9c8-8-): r58c1|r13578c3|r357c7=4 => r9c2<>8
+---------------------+-----------------+-----------------+
| 5 347d 479*bd | 8 679 2 | 1 346d 346d |
| 37 6 2 | 1 4 37 | 9 5 8 |
| 1 48bcd 489*bc | 56 569 359 | 346* 7 2 |
+---------------------+-----------------+-----------------+
| 8 234 5 | 9 1 6 | 7 234 34 |
| 3467* 23479 467* | 27 8 57 | 2346* 1 59 |
| 679 279 1 | 3 257 4 | 8 26 59 |
+---------------------+-----------------+-----------------+
| 2 5 4678* | 67 679 789 | 34*e 348e 1 |
| 467* 1 4678* | 2567 3 578 | 25 9 467 |
| 679 79-8 3 | 4 25 1 | 256 268e 67 |
+---------------------+-----------------+-----------------+
Locked Row Line/Box Pair: r7c78 => r7c3<>4
Locked Row Line/Box: r8c13 => r8c9<>4
Locked Column Line/Box: r89c7 => r5c7<>2
Locked Column Line/Box Pair: r89c9 => r1c9<>6
Locked Column Box/Box: r35c7|r16c8 => r9c7<>6
UR+2B/1SL (6,7): r89c19 => r8c1<>7
4-element Advanced Colouring: r8c1=4=r8c3-4-r3c3=4=r3c7=6=r5c7-6-r6c8=6=r6c1~6~r8c1 => r8c1<>6
5-element Advanced Colouring: r2c6=7=r1c5=6=r1c8-6-r6c8=6=r6c1-6-r9c1=6=r9c9=7=r8c9~7~ => r8c6<>7
5-element Nice Loop: r7c3=8=r8c3-8-r8c6-5-r5c6=5=r5c9=9=r5c2-9-r9c2~7~r7c3 => r7c3<>7
Locked Row Box/Box: r8c39|r9c129 => r8c4<>7
5-element Nice Loop: r7c4=7=r5c4=2=r6c5-2-r6c8-6-r1c8=6=r1c5=7=r2c6~7~ => r7c6<>7
B=1 cell ALS xy-mer: r69c2-2-r6c8-6-r1c289-7-r69c2|r5c7 => r5c2<>7,r5c2<>9,r1c3<>4
Locked Row Box/Box: r8c39|r9c19 => r8c4<>6
UR+2B/1SL (3,4): r14c89 => r4c8<>4
5-node XY-chain (r5c4-2-r8c4-5-r3c4-6-r1c5-9-r1c3-7-) => r5c3<>7
3-element Nice Loop: r3c3=4=r3c7=6=r5c7-6-r5c3-4-r3c3 => r5c1<>6
Mike Barker's Program wrote:2-link Kraken Row Swordfish (r2c6-7-r5c6-5-, r6c5=5=r6c9-5, r9c9=5=r56c9-5-): r2c16|r6c125|r9c129 => r5c7<>5
3-valued/2-link Kraken House (SUM Exclusion) (r1c5=7=r2c6-7-r2c1-3-, r1c8-6-r6c8-2-r4c89-3-, r1c9-6-r89c9-4-r4c9-3-): r1c589 => r4c1<>3
4-valued/2-link Kraken Blossom (SUM Exclusion) (r5c7-2-r5c4=2=r8c4=6=r7c45-6-, r5c7-34-r4c89-2-r6c8-6-, r5c7-6-r5c13=6=r6c1-6-r9c1=6=r9c789-6-, r5c7-9-r2c7-3-r7c7|r89c9-6-): r5c7 => r7c8<>6
Locked Column Line/Box: r12c1 => r579c1<>7
Locked Column Box/Box: r38c8|r389c9 => r46c8<>6,r5c9<>6
Two Strong Links: r5c9 =1= r5c1 -1- r6c2 =1= r3c2 ~1~ => r3c9<>1
4-element NRCT chain: r2c6 -1- r8c6 =1= r7c5 =7= r7c3 =8= (r7c5)r7c1 ~8~ => r2c1<>8
+--------------------+---------------------+-------------------+
| 13478 2 6 | 3458 1348 1458 | 9 137 1378 |
| 137-8 9 5 | 238 6 18* | 4 1237 12378 |
| 1348 138 348 | 9 12348 7 | 5 1236 2368 |
+--------------------+---------------------+-------------------+
| 9 3678 2378 | 1 2478 468 | 36 37 5 |
| 136 4 37 | 57 79 569 | 2 8 1379 |
| 5 1678 278 | 278 2789 3 | 16 179 4 |
+--------------------+---------------------+-------------------+
| 348* 5 3478* | 6 134789* 2 | 13 1349 139 |
| 23468 368 9 | 348 5 148* | 7 12346 1236 |
| 2346 367 1 | 347 3479 49 | 8 5 2369 |
+--------------------+---------------------+-------------------+
5-element Advanced Colouring: r8c6 =1= r7c5 -1- r7c7 =1= r6c7 -1- r6c2 =1= r5c1 =6= r5c6 =5= r1c6 ~1~ r8c6
=> r1c6<>1
5-element NRCT chain: r3c3 =4= r7c3 -4- r7c8 =4= r8c8 =6= r3c8 =2= (r8c8)r2c8 -2- r2c4 =2= r3c5 ~4~ r3c3 => r3c5<>4
+--------------------+--------------------+-------------------+
| 13478 2 6 | 3458 1348 458 | 9 137 1378 |
| 137 9 5 | 238* 6 18 | 4 1237* 12378 |
| 1348 138 348* | 9 1238-4* 7 | 5 1236* 2368 |
+--------------------+--------------------+-------------------+
| 9 3678 2378 | 1 2478 468 | 36 37 5 |
| 136 4 37 | 57 79 569 | 2 8 1379 |
| 5 1678 278 | 278 2789 3 | 16 179 4 |
+--------------------+--------------------+-------------------+
| 348 5 3478* | 6 134789 2 | 13 1349* 139 |
| 23468 368 9 | 348 5 148 | 7 12346* 1236 |
| 2346 367 1 | 347 3479 49 | 8 5 2369 |
+--------------------+--------------------+-------------------+
Locked Row Line/Box: r1c456 => r1c1<>4
Overlap 5-element NRCT chain: r1c6 =5= r1c4 -5- r5c4 =5= r5c6 =6= r4c6 =4= r4c5 -4- (r1c4)r1c5 ~4~ => r1c6=45
+--------------------+---------------------+-------------------+
| 1378 2 6 | 3458* 1348* 45-8* | 9 137 1378 |
| 137 9 5 | 238 6 18 | 4 1237 12378 |
| 1348 138 348 | 9 1238 7 | 5 1236 2368 |
+--------------------+---------------------+-------------------+
| 9 3678 2378 | 1 2478* 468* | 36 37 5 |
| 136 4 37 | 57* 79 569* | 2 8 1379 |
| 5 1678 278 | 278 2789 3 | 16 179 4 |
+--------------------+---------------------+-------------------+
| 348 5 3478 | 6 134789 2 | 13 1349 139 |
| 23468 368 9 | 348 5 148 | 7 12346 1236 |
| 2346 367 1 | 347 3479 49 | 8 5 2369 |
+--------------------+---------------------+-------------------+
7-element NRCT chain: r5c6 =6= r4c6 =4= r4c5 =2= r4c3 =8= (r4c56)r4c2 -8- (2)r6c3 -7- r7c3 =7= r7c5
-7- r5c5 ~9~ r5c6 => r5c6<>9
+--------------------+---------------------+-------------------+
| 1378 2 6 | 3458 1348 45 | 9 137 1378 |
| 137 9 5 | 238 6 18 | 4 1237 12378 |
| 1348 138 348 | 9 1238 7 | 5 1236 2368 |
+--------------------+---------------------+-------------------+
| 9 3678* 2378* | 1 2478* 468* | 36 37 5 |
| 136 4 37 | 57 79* 56-9* | 2 8 1379 |
| 5 1678 278* | 278 2789 3 | 16 179 4 |
+--------------------+---------------------+-------------------+
| 348 5 3478* | 6 134789* 2 | 13 1349 139 |
| 23468 368 9 | 348 5 148 | 7 12346 1236 |
| 2346 367 1 | 347 3479 49 | 8 5 2369 |
+--------------------+---------------------+-------------------+
Lasso 10-element NRCT chain: r8c6 =1= r7c5 =7= r7c3 =8= (r7c5)r7c1 =4= (r7c35)r7c8 =9= r7c9 =3= (r7c1358)r7c7
-3- r4c7 -6- r6c7 =6= r6c2 -6- (8)r8c2 -(367)- r9c2 => r8c89<>1,r2c6<>1,r7c5<>1
+--------------------+--------------------+--------------------+
| 1378 2 6 | 3458 1348 45 | 9 137 1378 |
| 137 9 5 | 238 6 8-1 | 4 1237 12378 |
| 1348 138 348 | 9 1238 7 | 5 1236 2368 |
+--------------------+--------------------+--------------------+
| 9 3678 2378 | 1 2478 468 | 36* 37 5 |
| 136 4 37 | 57 79 56 | 2 8 1379 |
| 5 1678* 278 | 278 2789 3 | 16* 179 4 |
+--------------------+--------------------+--------------------+
| 348* 5 3478* | 6 3478-1* 2 | 13* 1349* 139* |
| 23468 368* 9 | 348 5 148* | 7 2346-1 236-1 |
| 2346 367* 1 | 347 347 9 | 8 5 236 |
+--------------------+--------------------+--------------------+
Three Strong Links: r5c9 =1= r5c1 -1- r6c2 =1= r3c2 -1- r3c5 =1= r1c5 ~1~ => r1c9<>1
6-element NRCT chain: r4c8 -3- r4c7 =3= r7c7 =1= r6c7 -1- r6c2 =1= r3c2 -1- r3c5 =1= r1c5 -1- (3)r1c8 ~7~
=> r26c8<>7
+--------------------+----------------+------------------+
| 1378 2 6 | 345 134* 45 | 9 137* 378 |
| 137 9 5 | 23 6 8 | 4 123-7 1237 |
| 1348 138* 348 | 9 123* 7 | 5 1236 2368 |
+--------------------+----------------+------------------+
| 9 3678 2378 | 1 2478 46 | 36* 37* 5 |
| 136 4 37 | 57 79 56 | 2 8 1379 |
| 5 1678* 278 | 278 2789 3 | 16* 19-7 4 |
+--------------------+----------------+------------------+
| 348 5 3478 | 6 3478 2 | 13* 1349 139 |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+------------------+
3-element NRCT chain: r7c7 =1= r6c7 -1- r6c8 -9- r7c8 =9= r7c9 ~1~ r7c7 => r7c9<>1
+--------------------+----------------+-----------------+
| 1378 2 6 | 345 134 45 | 9 137 378 |
| 137 9 5 | 23 6 8 | 4 123 1237 |
| 1348 138 348 | 9 123 7 | 5 1236 2368 |
+--------------------+----------------+-----------------+
| 9 3678 2378 | 1 2478 46 | 36 37 5 |
| 136 4 37 | 57 79 56 | 2 8 1379 |
| 5 1678 278 | 278 2789 3 | 16* 19* 4 |
+--------------------+----------------+-----------------+
| 348 5 3478 | 6 3478 2 | 13* 1349* 39-1* |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+-----------------+
6-element NRCT chain: r4c8 -3- r4c7 =3= r7c7 =1= r7c8 -1- (3)r2c8 -2- r2c4 =2= r6c4 -2- r6c3 =2= r4c3 ~7~ r4c8
=> r4c3<>7
+---------------------+----------------+-----------------+
| 1378 2 6 | 345 134 45 | 9 137 378 |
| 137 9 5 | 23* 6 8 | 4 123* 1237 |
| 1348 138 348 | 9 123 7 | 5 1236 2368 |
+---------------------+----------------+-----------------+
| 9 3678 238-7* | 1 2478 46 | 36* 37* 5 |
| 136 4 37 | 57 79 56 | 2 8 1379 |
| 5 1678 278* | 278* 2789 3 | 16 19 4 |
+---------------------+----------------+-----------------+
| 348 5 3478 | 6 3478 2 | 13* 1349* 39 |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+---------------------+----------------+-----------------+
7-element NRCT chain: r4c7 =3= r7c7 =1= r7c8 =4= r8c8 =6= r3c8 =2= (r8c8)r2c8 -2- r2c4 =2= r6c4 -2- r6c3
=2= r4c3 ~3~ r4c7 => r4c3<>3
+--------------------+----------------+-----------------+
| 1378 2 6 | 345 134 45 | 9 137 378 |
| 137 9 5 | 23* 6 8 | 4 123* 1237 |
| 1348 138 348 | 9 123 7 | 5 1236* 2368 |
+--------------------+----------------+-----------------+
| 9 3678 28-3* | 1 2478 46 | 36* 37 5 |
| 136 4 37 | 57 79 56 | 2 8 1379 |
| 5 1678 278* | 278* 2789 3 | 16 19 4 |
+--------------------+----------------+-----------------+
| 348 5 3478 | 6 3478 2 | 13* 1349* 39 |
| 23468 368 9 | 348 5 1 | 7 2346* 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+-----------------+
9-element NRCT chain: r3c3 =4= r7c3 =7= r7c5 =8= r8c4 =4= (r8c1)r8c8 =6= r3c8 =2= (r8c8)r2c8 -2- r2c4 =2= r6c4
=7= (r9c4)r5c4 -7- r5c3 ~3~ r3c3 => r3c3<>3
+--------------------+----------------+-----------------+
| 1378 2 6 | 345 134 45 | 9 137 378 |
| 137 9 5 | 23* 6 8 | 4 123* 1237 |
| 1348 138 48-3* | 9 123 7 | 5 1236* 2368 |
+--------------------+----------------+-----------------+
| 9 3678 28 | 1 2478 46 | 36 37 5 |
| 136 4 37* | 57* 79 56 | 2 8 1379 |
| 5 1678 278 | 278* 2789 3 | 16 19 4 |
+--------------------+----------------+-----------------+
| 348 5 3478* | 6 3478* 2 | 13 1349 39 |
| 23468 368 9 | 348* 5 1 | 7 2346* 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+-----------------+
Two Strong Links: r5c3 =3= r7c3 -3- r7c7 =3= r4c7 ~3~ => r4c2<>3,r5c9<>3
5-element NRCT chain: r5c3 =3= r7c3 =7= r7c5 =8= (r7c3)r7c1 -8- (3)r8c2 -6- (r6c2)r4c2 =6= r5c1 ~3~ r5c3 => r5c1<>3
+--------------------+----------------+-----------------+
| 1378 2 6 | 345 134 45 | 9 137 378 |
| 137 9 5 | 23 6 8 | 4 123 1237 |
| 1348 138 48 | 9 123 7 | 5 1236 2368 |
+--------------------+----------------+-----------------+
| 9 678* 28 | 1 2478 46 | 36 37 5 |
| 16-3* 4 37* | 57 79 56 | 2 8 179 |
| 5 1678 278 | 278 2789 3 | 16 19 4 |
+--------------------+----------------+-----------------+
| 348* 5 3478* | 6 3478* 2 | 13 1349 39 |
| 23468 368* 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+-----------------+
5-element NRCT chain: r1c5 =1= r3c5 -1- r3c2 =1= r6c2 -1- r5c1 -6- r5c6 =6= r4c6 =4= r4c5 ~4~ r1c5 => r1c5<>4
+-------------------+----------------+-----------------+
| 1378 2 6 | 345 13-4* 45 | 9 137 378 |
| 137 9 5 | 23 6 8 | 4 123 1237 |
| 1348 138* 48 | 9 123* 7 | 5 1236 2368 |
+-------------------+----------------+-----------------+
| 9 678 28 | 1 2478* 46* | 36 37 5 |
| 16* 4 3 | 57 79 56* | 2 8 179 |
| 5 1678* 278 | 278 2789 3 | 16 19 4 |
+-------------------+----------------+-----------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+-------------------+----------------+-----------------+
Hidden Pair in a box: r1c46 => r1c4=45
6-element NRCT chain: r3c2 =1= r6c2 -1- r5c1 -6- r5c6 =6= r4c6 =4= r4c5 =2= r4c3 =8= (r4c5)r4c2 ~8~ r3c2 => r3c2<>8
+-------------------+----------------+-----------------+
| 1378 2 6 | 45 13 45 | 9 137 378 |
| 137 9 5 | 23 6 8 | 4 123 1237 |
| 1348 13-8* 48 | 9 123 7 | 5 1236 2368 |
+-------------------+----------------+-----------------+
| 9 678* 28* | 1 2478* 46* | 36 37 5 |
| 16* 4 3 | 57 79 56* | 2 8 179 |
| 5 1678* 278 | 278 2789 3 | 16 19 4 |
+-------------------+----------------+-----------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+-------------------+----------------+-----------------+
4-element NRCT chain: r2c1 =7= r2c9 =1= r5c9 -1- r5c1 =1= r6c2 -1- r3c2 ~3~ r2c1 => r2c1<>3
+-------------------+----------------+-----------------+
| 1378 2 6 | 45 13 45 | 9 137 378 |
| 17-3* 9 5 | 23 6 8 | 4 123 1237* |
| 1348 13* 48 | 9 123 7 | 5 1236 2368 |
+-------------------+----------------+-----------------+
| 9 678 28 | 1 2478 46 | 36 37 5 |
| 16* 4 3 | 57 79 56 | 2 8 179* |
| 5 1678* 278 | 278 2789 3 | 16 19 4 |
+-------------------+----------------+-----------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 23468 368 9 | 348 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+-------------------+----------------+-----------------+
6-element NRCT chain: r8c4 =8= r6c4 -8- (r6c5)r4c5 =8= r7c5 =7= r7c3 =4= r3c3 =8= (r67c3)r4c3 -8- (r6c2)r4c2
=8= r8c2 ~8~ => r8c1<>8
+--------------------+----------------+-----------------+
| 1378 2 6 | 45 13 45 | 9 137 378 |
| 17 9 5 | 23 6 8 | 4 123 1237 |
| 1348 13 48* | 9 123 7 | 5 1236 2368 |
+--------------------+----------------+-----------------+
| 9 678* 28* | 1 2478* 46 | 36 37 5 |
| 16 4 3 | 57 79 56 | 2 8 179 |
| 5 1678 278 | 278* 2789 3 | 16 19 4 |
+--------------------+----------------+-----------------+
| 348 5 478* | 6 3478* 2 | 13 1349 39 |
| 2346-8 368* 9 | 348* 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+--------------------+----------------+-----------------+
5-element NRCT chain: r1c4 =4= r1c6 -4- r4c6 =4= r4c5 =2= r4c3 =8= (r4c5)r4c2 -8- r8c2 =8= r8c4 ~4~ r1c4 => r8c4<>4
+------------------+-----------------+-----------------+
| 1378 2 6 | 45* 13 45* | 9 137 378 |
| 17 9 5 | 23 6 8 | 4 123 1237 |
| 1348 13 48 | 9 123 7 | 5 1236 2368 |
+------------------+-----------------+-----------------+
| 9 678* 28* | 1 2478* 46* | 36 37 5 |
| 16 4 3 | 57 79 56 | 2 8 179 |
| 5 1678 278 | 278 2789 3 | 16 19 4 |
+------------------+-----------------+-----------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 2346 368* 9 | 38-4* 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+------------------+-----------------+-----------------+
6-element NRCT chain: r3c8 =6= r8c8 =4= r8c1 =2= r9c1 =6= (r8c1)r5c1 =1= r6c2 -1- r3c2 ~3~ r3c8 => r3c8<>3
+------------------+----------------+------------------+
| 1378 2 6 | 45 13 45 | 9 137 378 |
| 17 9 5 | 23 6 8 | 4 123 1237 |
| 1348 13* 48 | 9 123 7 | 5 126-3* 2368 |
+------------------+----------------+------------------+
| 9 678 28 | 1 2478 46 | 36 37 5 |
| 16* 4 3 | 57 79 56 | 2 8 179 |
| 5 1678* 278 | 278 2789 3 | 16 19 4 |
+------------------+----------------+------------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 2346* 368 9 | 38 5 1 | 7 2346* 236 |
| 2346* 367 1 | 347 347 9 | 8 5 236 |
+------------------+----------------+------------------+
7-element NRCT chain: r1c5 -3- r2c4 -2- (3)r3c5 -1- r3c2 =1= r6c2 -1- (r6c8)r6c7 =1= r5c9 =7= r4c8 -7- (3)r1c8 ~1~
=> r1c1<>1
+-------------------+----------------+-----------------+
| 378-1 2 6 | 45 13* 45 | 9 137* 378 |
| 17 9 5 | 23* 6 8 | 4 123 1237 |
| 1348 13* 48 | 9 123* 7 | 5 126 2368 |
+-------------------+----------------+-----------------+
| 9 678 28 | 1 2478 46 | 36 37* 5 |
| 16 4 3 | 57 79 56 | 2 8 179* |
| 5 1678* 278 | 278 2789 3 | 16* 19 4 |
+-------------------+----------------+-----------------+
| 348 5 478 | 6 3478 2 | 13 1349 39 |
| 2346 368 9 | 38 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+-------------------+----------------+-----------------+
8-element NRCT chain: r3c2 =1= r6c2 -1- (r6c8)r6c7 =1= r5c9 =7= r4c8 -7- (r6c2)r4c2 =7= r6c3 -7- r7c3 =7= r7c5
=8= r8c4 -8- (7)r6c4 -2- r2c4 =2= r3c5 ~1~ r3c2 => r3c5<>1
+------------------+----------------+-----------------+
| 378 2 6 | 45 13 45 | 9 137 378 |
| 17 9 5 | 23* 6 8 | 4 123 1237 |
| 1348 13* 48 | 9 23-1* 7 | 5 126 2368 |
+------------------+----------------+-----------------+
| 9 678* 28 | 1 2478 46 | 36 37* 5 |
| 16 4 3 | 57 79 56 | 2 8 179* |
| 5 1678* 278* | 278* 2789 3 | 16* 19 4 |
+------------------+----------------+-----------------+
| 348 5 478* | 6 3478* 2 | 13 1349 39 |
| 2346 368 9 | 38* 5 1 | 7 2346 236 |
| 2346 367 1 | 347 347 9 | 8 5 236 |
+------------------+----------------+-----------------+
Naked Column Pair: r14c8 => r278c8<>3
3-element Advanced Colouring: r2c9 =1= r5c9 =7= r4c8 =3= r1c8 ~3~ r2c9 => r2c9<>3
Locked Column Box/Box: r137c1|r37c3 => r6c3<>8
134x7k8 2 6 |34z5a8 1348 145A8 |9 137 1378
137K8 9 5 |2m38 6 1É8é |4 1237 12378
1348 1e38 34l8 |9 12M34x8 7 |5 1236b 1236B8
-----------------------------------------------------------------------
9 3678 2c378 |1 2C4d78 4D6f8 |3G6g 3Ê7ê 5
1e36f 4 3ë7Ë |5A7a 7Ì9ì 5a6F9n |2 8 1E3s7Â9h
5 1E6g78 2C78 |2M78 2789h 3 |1g6G 179H 4
-----------------------------------------------------------------------
348 5 34L7i8 |6 1p347I8ä9È 2 |1G3g 134o9h 139
2J3468 368 9 |348 5 1P48 |7 12R34O6B 1236
2j34y6 367I 1 |347á 3479 4n9N |8 5 2J36À9È
134x7k8b 2 6 |3Ç4z5a 1n34 4a5A |9 137 1378B
1p37K 9 5 |2G3g 6 8 |4 1237 1237
1348 1e38 34l8 |9 1N2g34x 7 |5 1236c 1236C8b
-------------------------------------------------------------------
9 3s6È78d 2 |1 4a78D 4A6a |3H6h 3Å7å 5
1e36a 4 3Æ7æ |5A7a 7F9f 5a6A |2 8 1E3s7Â9F
5 1E6h78 7Ä8ä |2g78m 2G789F 3 |1h6H 179f 4
-------------------------------------------------------------------
348 5 34L7i8 |6 347I8m 2 |1H3h 1Î34o9F 139f
2J3468 368 9 |348M 5 1 |7 2R34O6C 236
2j34y6 367I 1 |347á 347 9 |8 5 2J36À
[]8r6c4/8r8c4_8r7c5r8c6/7r7c5|*r7c5r8c6_7r7c3/8r37c3|*r37c3_8r46c3/8r4c2_8r4c356/6r4c6|*r4c356_6r89c1/4r89c1|*r89c1_4r7c13/4r7c8_4r8c8/2r38c8|*r38c8_2r2c8/2r2c4_2r6c4/8r6c4
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests