urhegyi wrote:Last step was this AIC: If R1C3=8 ==> R2C3<>8=7 else R1C3=2(R1C7<>2;R3C9=2;R3C9<>5;R9C9=5;R9C9<>8;R9C7=8;R12C7<>8;R1C7=9;R2C7=3;R2C9=8;R2C3<>8=7).
Conclusion in both cases R2C3=7 and R2C1=9.
Can someone help me to write this in correct notation?
35...7.14.1.542.6.......7....5......8.....4.6....3...7..9..6.7....7..62..3.9.....
.-----------------.---------------.-------------------.
| 3 5 a28 | 68 69 7 | bf29-8 1 4 |
| 79 1 7-8 | 5 4 2 | f389 6 g38 |
| 49 69 2468 | 3 1 89 | 7 589 c258 |
:-----------------+---------------+-------------------:
| 1469 7 5 | 268 69 489 | 1289 3 128 |
| 8 2 3 | 1 7 59 | 4 59 6 |
| 1469 69 46 | 26 3 4589 | 1258 589 7 |
:-----------------+---------------+-------------------:
| 2 8 9 | 4 5 6 | 13 7 13 |
| 5 4 1 | 7 8 3 | 6 2 9 |
| 67 3 67 | 9 2 1 | e58 4 d58 |
'-----------------'---------------'-------------------'
7x7 TM (Triangular Matrix)
--------------------------
8r1c3 2r1c3
2r1c7 2r3c9
5r3c9 5r9c9
8r9c9 8r9c7
2r1c7 8r1c7 9r1c7
8r2c7 9r2c7 3r2c7
8r2c9 3r2c9
==========================================
-8r1c7
-8r2c3
(2)r1c7 - (2=8)r1c3
||
(8)r1c7 - r9c7 = (8-5)r9c9 = (5-2)r3c9 = r1c7 - (2=8)r1c3
||
(9)r1c7 - (9=38)r2c79
=> -8 r1c7, r2c3; btte
(8=2*)r1c3 - r1c7 = (2-5)r3c9 = (5-8)r9c9 = r9c7 - (8|*2=93)r12c7 - (3=8)r2c9 => -8 r1c7,r2c3; btte
(8=2)r1c3 - r1c7 = [!=(2-5)r3c9 = (5-8)r9c9 = r9c7 - (8=93)r12c7] - (3=8)r2c9 => -8 r1c7,r2c3; btte
.-----------------.---------------.-------------------.
| 3 5 a28 | 68 69 7 | bd29-8 1 4 |
| 79 1 7-8 | 5 4 2 | d389 6 e38 |
| 49 69 2468 | 3 1 89 | 7 589 c258 |
:-----------------+---------------+-------------------:
| 1469 7 5 | 268 69 489 | 1289 3 128 |
| 8 2 3 | 1 7 59 | 4 59 6 |
| 1469 69 46 | 26 3 4589 | 1258 589 7 |
:-----------------+---------------+-------------------:
| 2 8 9 | 4 5 6 | 13 7 13 |
| 5 4 1 | 7 8 3 | 6 2 9 |
| 67 3 67 | 9 2 1 | d58 4 c58 |
'-----------------'---------------'-------------------'
(8=2)r1c3 - r1c7 = (25)r39c9 - (2|5=893)r192c7 - (3=8)r2c9 => -8 r1c7,r2c3; btte
This solved the sudoku by singles.
Return to Help with puzzles and solving techniques
Users browsing this forum: No registered users and 1 guest