Robert_Mauriès, p.2 wrote:- Une technique de résolution est une démarche (raisonnement) logique permettant de placer ou d'éliminer des candidats sur une grille en appliquant R.
Translator= me wrote:A resolution technique is a logical step/move/approach (reasoning) allowing to assert or eliminate candidates in a grid by applying R
Robert_Mauriès, p.2 wrote:On désigne par TR l’ensemble des techniques de résolution permettant de résoudre une grille
Translator= me wrote:We notate by TR the set of resolution techniques allowing to solve a grid
Robert_Mauriès, p.3 wrote:Une piste P(Ak ) issue d’un candidat A k est l’ensemble des candidats A i ∈ G que l’on placerait avec les TR si A k était placé.
Translator= me wrote:A track P(Ak) based on a candidate Ak is the set of candidates that would be asserted as true by the TR if Ak was true.
Robert_Mauriès, p.2 wrote:Une entité de G est l’ensemble formé de tous les candidats d’une même case, ou de tous les candidats de même occurrence d’une même zone
Translator = me wrote:An entity is the set of candidates for the same cell or the set of candidates with the same number in the same unit"
Robert_Mauriès, p.3 wrote:Définitions 2-1
1) Une piste P(Ak ) issue d’un candidat Ak est l’ensemble des candidats Ai ∈ G que l’on placerait avec les TR si Ak était placé.
2) Une antipiste P’(Ak ) issue d’un candidat Ak est l’ensemble des candidats Ai ∈ G que l’on placerait avec les TR si Ak était éliminé de la grille.
On dit que P’(Ak ) est l’antipiste de la piste P(Ak ).
3) Une piste P(E) issue d’un ensemble de candidats E est l’ensemble des candidats Ai communs à toutes les pistes issues de tous les candidats Ak ∈ E .
On a donc P(E) = ∩ E P(Ak ), soit P(E) ⊆ P(Ak ) ∀k.
4) Une antipiste P’(E) issue d’un ensemble de candidats E est l’ensemble des candidats Ai que l’on placerait avec les TR si on éliminait tous les candidats A k ∈ E .
On dit que P’(E) est l’antipiste de la piste P(E).
Translator = me wrote:Definitions 2.1
1) The track P(Ak) based on a candidate Ak is the set of candidates that would be asserted as true by the TR if Ak was true.
2) The antitrack P'(Ak) based on a candidate Ak is the set of candidates that would be asserted as true by the TR if Ak was false.
3) The track P(E) based on a set of candidates E is the set of candidates common to all the tracks P(Ak), Ak ∈ E.
We therefore have P(E) = ∩E P(Ak ), i.e. P(E) ⊆ P(Ak ) ∀k.
4) The antitrack P'(E) based on a set of candidates E={Ak...} is the set of candidates that would be asserted as true by the TR if all the Ak ∈ E were false.
We say that P'(E) is the anti track of the track P(E).
Edit: I've improved the translation of 4) so that there is no ambiguity about the meaning of "true"
Robert_Mauriès, p.5 wrote:Théorème 2-1 :
Si E1 et E2 forment une paire d’ensembles, la piste P(E1) issue de E1 est identique à l’antipiste P’(E2) issue de E2, et réciproquement.
En particulier, si deux candidats forment une paire, la piste issue de l’un et identique à l’antipiste issue de l’autre.
Translator = me wrote:Theorem 2-1 :
If E1 and E2 form a pair of sets, the track P(E1) based on E1 is identical to the antitrack P’(E2) based on E2, and conversely.
In particular, if two candidates make a bivalue/bilocal pair, the track based on one of them is identical to the antitrack based on the other.
Robert_Mauriès, p.5 wrote: l’antipiste P’(E2) est construite en supposant que les candidats de E2 sont éliminés, donc que seuls les candidats de E1 subsistent puisque E1 et E2 forment une paire d’ensembles.
Comme un des candidats Ak de E1 doit être placé pour appliquer R, on peut dire que un des Ak de E1 est un candidat de P’(E2), donc que pour ce Ak on a P(Ak ) ⊆ P’(E2), donc que P(E1) ⊆ P(Ak ) ⊆ P’(E2)....
Translator = me wrote: the antitrack P’(E2) is built by supposing that the candidates in E2 are eliminated; therefore only the candidates in E1 remain, because E1 and E2 form a pair of sets.
As one of the candidates Ak in E1 must be true for applying R, one can say that one of the Ak's in E1 is a candidate of P’(E2); for this Ak one has P(Ak ) ⊆ P’(E2), and therefore P(E1) ⊆ P(Ak ) ⊆ P’(E2)....
DEFISE wrote:Indeed, the proof of this theorem is not valid. Robert knows this since I told him in 2019 !
DEFISE wrote:Indeed, the proof of this theorem is not valid. Robert knows this since I told him in 2019 !
Mauriès Robert wrote:I maintain that it is true and that my demonstration is correct.
DEFISE wrote:I think you are wasting your time. It's like telling Picasso that he doesn't respect the proportions.
Nevertheless, I sent you what I said to Robert in 2019, including a counter-example. His answer had been "Joker for now".
DEFISE wrote:Hi Denis,
I think you are wasting your time. It's like telling Picasso that he doesn't respect the proportions.
Nevertheless, I sent you what I said to Robert in 2019, including a counter-example. His answer had been "Joker for now".
Return to Advanced solving techniques
Users browsing this forum: No registered users and 1 guest