
.........
.A...BB..
.A....CC.
.A...DD..
.........
..EE....F
..GE....F
..G......
.....HH..
.........
.A...BBB.
.A...CC..
.A...C...
.........
..DD....E
..FD...EE
..F......
.....GG..
.........
.A....BB.
.A...CC..
.A...CC..
.........
..DD....E
..FD....E
..F......
.....GG..
creint wrote:Broughton's bruteforce can solve it too.
. . . | . . . | . . .
. x . | . . . | x x .
. x . | . . x | x . .
------+-------+-------
. x . | . . x | x . .
. . . | . . . | . . .
. . 6 | a . . | . . b
------+-------+-------
x . a | b . . | . . 67
x . b | . . . | . . .
. . . | . . x | x . .
. a . | . . . | b . .
. x . | . a b | x x .
b x . | . . x | x a .
------+-------+-------
a x . | . b x | x . .
. b . | . . . | a . .
. . 6 | a . . | . . b
------+-------+-------
x . a | b . . | . . 67
x . b | . . a | . . .
. . . | . . x | x b a
6 9 . | . . . | 8 7 .
7 x . | . 9 8 | x x .
8 x . | . . x | x 9 .
------+-------+------
9 x 7 | . 8 x | x . .
. 8 . | . . 7 | 9 . .
. . 6 | 9 . . | 7 . 8
------+-------+------
x . 9 | 8 . 6 | . . 7
x 7 8 | . . 9 | 6 . .
. 6 . | . . x | x 8 9
6 9 . | . . . | 8 7 .
7 . . | . 9 8 | 45 y .
8 . . | . . . | . 9 .
------+-------+-------
9 . 7 | . 8 . | . . .
. 8 . | . . 7 | 9 . .
. . 6 | 9 y . | 7 z 8
------+-------+-------
y . 9 | 8 z 6 | . . 7
z 7 8 | . . 9 | 6 . y
. 6 . | . . y | z 8 9
6 9 . | y . . | 8 7 .
7 * . | . 9 8 | 45 y .
8 y . | . . . | . 9 .
------+-------+-------
9 z 7 | . 8 . | y . .
. 8 y | z . 7 | 9 . .
. . 6 | 9 y . | 7 z 8
------+-------+-------
y . 9 | 8 z 6 | . . 7
z 7 8 | . . 9 | 6 . y
. 6 . | . . y | z 8 9
6 9 . | 1 5 . | 8 7 .
7 4 . | . 9 8 | 5 1 .
8 1 5 | . . 2 | 3 9 .
------+-------+------
9 2 7 | . 8 5 | 1 . 3
. 8 1 | 2 . 7 | 9 . 5
. . 6 | 9 1 . | 7 2 8
------+-------+------
1 . 9 | 8 2 6 | 4 . 7
2 7 8 | . . 9 | 6 . 1
. 6 4 | . . 1 | 2 8 9
. . . | . . . | . . .
. 2 . | . . 1 | 4 . .
. 4 . | . . . | 5 1 .
-------+--------+-------
. 1 . | . . 4 | 2 . .
. . . | . . . | . . .
. . 6 | 89 . . | . . 89
-------+--------+-------
12 . 89| 89 . . | . . 67
12 . 89| . . . | . . .
. . . | . . 2 | 1 . .
. . . | . . . | . . .
. 14 . | . . 2 | 3 . .
. 124 . | . . . | 45 12 .
---------+--------+---------
. 24 . | . . 5 | 1 . .
. . . | . . . | . . .
. . 6 | 89 . . | . . 89
---------+--------+---------
12 . 89| 89 . . | . . 67
12 . 89| . . . | . . .
. . . | . . 1 | 2 . .
ocean and eleven should have paired up to make a sudoku-solving duo called Ocean's Eleven
999_Springs wrote:the (8-cage, 18-cell) White Room puzzle got featured on cracking the cryptic's youtube channel here. congratulations to mith, you're youtube famous(how do you know CTC?!) CTC finds a solution by hand in half an hour which is an impressive time, faster than what i did it in
..............1..2..3.4..5..............3..4.16...2..7....5..3...4.8.....1......6
==>
..53..........61....8.....4..45....3..........1...2....2...761............34.....
..79..........31....6.....8..87....9..........1...2....2...431............98.....
mith wrote:So we've basically completed a proof that 17 cell coverage with no givens is impossible, unless there is still a 17c classic to be found.
mith wrote:3. In order for a killer version to have any chance of solving uniquely, the digits need to be partitioned high/low such that the cage sums are as high/low as possible to limit options.
semax wrote:mith wrote:3. In order for a killer version to have any chance of solving uniquely, the digits need to be partitioned high/low such that the cage sums are as high/low as possible to limit options.
Well, to always have the maximum/minimum sums will limit options, but it's not necessary for a uniquely solvable killer. So, at this point, it's not really a proof.
Trivial counter examples are 4=1+3, or 11=1+2+3+5, etc.
Next would be sums with more options in the vicinity of other sums, which could mutually exclude combinations. E.g. 14=9+5 and 15=8+7, when in the same area.
And then you could have sums with lots of options that are only resolved later in the solving process.
Users browsing this forum: No registered users and 0 guests