
+---+---+---+
|4.5|..6|...|
|.7.|.8.|..4|
|6..|...|.9.|
+---+---+---+
|...|..4|..7|
|..9|...|.8.|
|.6.|5..|...|
+---+---+---+
|...|..7|5..|
|8..|.6.|...|
|...|9..|.12|
+---+---+---+ ED=9.0/7.1/6.7
+---+---+---+
|...|..4|...|
|.5.|.6.|.4.|
|7..|8..|9..|
+---+---+---+
|...|...|...|
|8..|..9|..7|
|5..|...|.6.|
+---+---+---+
|...|.4.|8..|
|.6.|7..|...|
|9..|.5.|.12|
+---+---+---+ ED=8.3/6.7/6.7 20C
#VT: (1 31 10 11 57 4 6 8 16)
235 24589 2459 256 7 568 3459 1 3589
57 6 1 4 89 3 2 5789 5789
2357 234589 234579 1 289 58 3459 45789 6
8 1 379 37 5 2 369 679 4
2357 2359 6 37 1 4 8 2579 23579
4 235 2357 8 6 9 35 257 1
9 2345 2345 256 248 7 1 24568 258
6 245 8 9 24 1 7 3 25
1 7 245 256 3 568 4569 245689 2589
pjb wrote:"Between them r3c7 and r8c8 include all patterns of 2, so patterns of 7 which include both cells can be deleted. As a result, no pattern of 7 includes r6c9 so 7 can be deleted from r6c9"
After Locked candidate Type 1 (Pointing): 3 @ r4c12 => -3 @ r4c789;
+-------------------------+------------------------+-----------------------+
| 456789 245689 245678 | 356789 26789 235789 | 3689 34679 1 |
| 1456789 45689 145678 | 1356789 6789 135789 | 3689 2 346789 |
| 16789 2689 3 | 16789 26789 4 | 689 679 5 |
+-------------------------+------------------------+-----------------------+
| 34589 34589 458 | 145789 24789 6 | 1259 1579 279 |
| 5689 7 568 | 1589 3 12589 | 4 1569 269 |
| 2 1 456 | 4579 479 579 | 3569 8 3679 |
+-------------------------+------------------------+-----------------------+
| 345678 234568 245678 | 346789 1 3789 | 235689 34569 234689 |
| 134678 3468 14678 | 2 5 3789 | 13689 13469 34689 |
| 134568 234568 9 | 3468 468 38 | 7 13456 23468 |
+-------------------------+------------------------+-----------------------+
POM: Digit 1 not in 6 Templates => -1 @ r4c4 r5c8
POM: Digit 2 not in 5 Templates => -2 @ r1c6 r4c5 r5c9
POM: Digit 2 in all 5 Templates => 2 @ r5c6
stte
After basics;
+-------------------+-----------------------+------------------------+
| 3789 2389 25789 | 1279 4 6 | 12579 12359 12379 |
| 1 36 2479 | 279 2579 2579 | 2479 8 36 |
| 679 2469 24579 | 1279 3 8 | 124579 124569 124679 |
+-------------------+-----------------------+------------------------+
| 2 3489 14789 | 3479 179 13479 | 6 149 5 |
| 369 5 149 | 8 1269 12349 | 12479 1249 12479 |
| 679 469 1479 | 24679 125679 124579 | 3 1249 8 |
+-------------------+-----------------------+------------------------+
| 5 1 3 | 24679 26789 2479 | 2489 2469 2469 |
| 89 289 289 | 5 16 134 | 14 7 1346 |
| 4 7 6 | 239 1289 1239 | 12589 12359 1239 |
+-------------------+-----------------------+------------------------+
POM: Digit 3 not in 5 Templates => -3 @ r1c1 r4c2 r5c6
POM: Digit 3 in all 5 Templates => 3 @ r5c1
POM: Digit 6 not in 1 Template => -6 @ r2c9 r3c1 r3c2 r3c9 r6c5 r6c4 r6c2 r7c5 r7c8 r7c9 r8c5
POM: Digit 6 in all 1 Template => 6 @ r2c2 r3c8 r5c5 r6c1 r7c4 r8c9
POM: Digit 7 not in 40 Templates => -7 @ r1c3 r2c3 r3c3
stte
After basics;
+-------------------+-----------------------+-----------------------+
| 1359 2359 12569 | 1258 4 7 | 12568 1235 12368 |
| 8 37 1245 | 125 1256 1256 | 1245 9 37 |
| 157 2457 12456 | 1258 3 9 | 124568 12457 124678 |
+-------------------+-----------------------+-----------------------+
| 2 349 1489 | 134 168 13468 | 7 146 5 |
| 1357 6 145 | 9 1257 12345 | 1248 124 1248 |
| 157 457 1458 | 12457 125678 124568 | 3 1246 9 |
+-------------------+-----------------------+-----------------------+
| 6 1 3 | 2457 25789 2458 | 2459 2457 247 |
| 59 259 259 | 6 17 134 | 14 8 1347 |
| 4 8 7 | 1235 1259 1235 | 12569 1235 1236 |
+-------------------+-----------------------+-----------------------+
POM: Digit 3 not in 5 Templates => -3 @ r1c1 r4c2 r5c6
POM: Digit 3 in all 5 Templates => 3 @ r5c1
POM: Digit 7 not in 1 Template => -7 @ r2c9 r3c1 r3c2 r3c9 r6c5 r6c4 r6c2 r7c5 r7c8 r7c9 r8c5
POM: Digit 7 in all 1 Template => 7 @ r2c2 r3c8 r5c5 r6c1 r7c4 r8c9
stte
((1 1 1) (1 2 1) (1 3 1) (1 4 2) (1 5 2) (1 6 2) (1 7 3) (1 8 3) (1 9 3)
(2 1 1) (2 2 1) (2 3 1) (2 4 2) (2 5 2) (2 6 2) (2 7 3) (2 8 3) (2 9 3)
(3 1 1) (3 2 1) (3 3 1) (3 4 2) (3 5 2) (3 6 2) (3 7 3) (3 8 3) (3 9 3)
(4 1 4) (4 2 4) (4 3 4) (4 4 5) (4 5 5) (4 6 5) (4 7 6) (4 8 6) (4 9 6)
(5 1 4) (5 2 4) (5 3 4) (5 4 5) (5 5 5) (5 6 5) (5 7 6) (5 8 6) (5 9 6)
(6 1 4) (6 2 4) (6 3 4) (6 4 5) (6 5 5) (6 6 5) (6 7 6) (6 8 6) (6 9 6)
(7 1 7) (7 2 7) (7 3 7) (7 4 8) (7 5 8) (7 6 8) (7 7 9) (7 8 9) (7 9 9)
(8 1 7) (8 2 7) (8 3 7) (8 4 8) (8 5 8) (8 6 8) (8 7 9) (8 8 9) (8 9 9)
(9 1 7) (9 2 7) (9 3 7) (9 4 8) (9 5 8) (9 6 8) (9 7 9) (9 8 9) (9 9 9))
#ind.Sets / size
81 1
2430 2
34506 3
247860 4
901044 5
1586304 6
1259712 7
419904 8
46656 9
size / (#TP #iS)
1 (5184 81)
2 (864 972) (576 1458)
3 (288 972) (144 11664) (96 17496) (64 4374)
4 (48 34992) (36 11664) (24 69984) (16 131220)
5 (16 26244) (12 139968) (8 209952) (4 524880)
6 (6 46656) (4 419904) (2 839808) (1 279936)
7 (2 419904) (1 839808)
8 (1 419904)
9 (1 46656)
0.00.000..0.0....0000.00.0.00.0.00.000..000..0.00.....0..0.0.0000..0.0...0....0.0 pattern
6.23.915..3.2....6954.61.3.86.5.43.241..235..5.31.....3..4.2.1514..3.6...2....4.3 0 sol
6.23.915..3.2....6954.16.3.26.5.43.141..235..5.31.....3..4.2.1584..3.6...2....4.3 1 sol StrmCkr
6.23.915..3.2....6954.61.3.28.5.43.141..235..5.36.....3..4.2.1514..3.6...2....4.3 7 sols
(3 13 27 28 41 52 60 71 74) (3 13 25 28 41 54 60 71 74) (3 13 25 28 41 53 60 72 74)
• . 2 • . • • • . • . 2 • . • • • . • . 2 • . • • • .
. • . 2 . . . . • . • . 2 . . . . • . • . 2 . . . . •
• • • . • • - • X • • • . • • X • - • • • . • • X • -
2 • . • . • • . • 2 • . • . • • . • 2 • . • . • • . •
• • . . 2 • • . . • • . . 2 • • . . • • . . 2 • • . .
• . • • . . X - - • . • • . . - - X • . • • . . - X -
• . . • . 2 . • • • . . • . 2 . • • • . . • . 2 . • •
• • . . • . • X - • • . . • . • X - • • . . • . • - X
. 2 . . . . • . • . 2 . . . . • . • . 2 . . . . • . •
Hajime wrote:You can not exchange stacks/bands that easily and also not columns/rows within stacks/bands.
8..2...3.4367..5.......1.......1.....2.9.......7.......4.5.....1....8492.....3..6
(24 32 64) (4 38 72) (8 11 78) (10 56 70) (16 58) (12 81) (13 48) (1 69) (40 71) parts from 1 to 9
1: (2 3 39 43 44 47 52 53 61 62)
2: (19 21 73 75)
3: (22 23 28 31 36 37 41 43 45 46 49 52 54 61 63)
4: (6 9 22 26 27 30 31 33 35 36 39 42 44 45 49 51 53 54)
5: (3 5 6 19 21 23 28 30 33 36 37 39 41 42 45 46 51 54)
6: (5 6 7 23 25 26 29 33 35 41 42 43 44 47 51 52 53)
7: (2 7 9 19 20 25 26 27 33 35 36 42 43 44 45 61 62 63 73 74)
8: (26 27 29 31 35 36 44 45 47 49 53 54)
9: (2 3 7 9 19 20 21 25 27 28 29 30 36 46 47 52 54 73 74 75)
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests