RedEd wrote:Fact: if a solution grid (not necessarily unique) contains an a/b/b/a pattern on four unclued cells, C, then C=b/a/a/b is also a solution.
Red Ed wrote:My definition of "solution grid" is any valid Sudoku grid, with all cells filled-in, that contains the puzzle.
Suggesting other definitions seems pointless to me.
Red Ed wrote:My proof talks about solution grids. You're interested in solution paths. Your discussion of validity of the latter is of no relevance to my proof. I would've thought it obvious that I was talking about grids, not paths.
denis berthier wrote:Sudoku is a logic game. I'm dismayed to see how easily some players with no logical or mathematical background get stucked in incantations based on undefined notions.
denis_berthier wrote:
Now, RedEd's "basic fact"RedEd wrote:Fact: if a solution grid (not necessarily unique) contains an a/b/b/a pattern on four unclued cells, C, then C=b/a/a/b is also a solution.
on which his whole proof rests, becomes obviously false if we accept only constructive solutions: how could r1c1 = 2 be constructively proved from the axioms of Sudoku and the entries when r1c1 = 1 has already been constructively proved at the time the UR1.1 pattern is detected? (or, to put it differently, how could two contradictory values be constructively proved if the puzzle is consistent?)
Conclusion: [b]RedEd's proof has an implicit assumption: we must accept any kind of solution, including non constructive ones, e.g. those obtained by recursive backtracking with guessing.
denis_berthier wrote:What do we call a solution? What kind of solutions do we accept? E.g. do we accept a solution obtained via recursive search with guessing - backtracking as it is also called?
I have developed the resolution rules perspective in order to formalise the distinction between a "pure logic" solution and a solution obtained by unrestricted means such as the above mentioned ones. In this perspective, a solution is one that can be obtained by repeated application of the resolution rules. It is a constructive solution.
Now, RedEd's "basic fact"RedEd wrote:Fact: if a solution grid (not necessarily unique) contains an a/b/b/a pattern on four unclued cells, C, then C=b/a/a/b is also a solution.
on which his whole proof rests, becomes obviously false if we accept only constructive solutions: how could r1c1 = 2 be constructively proved from the axioms of Sudoku and the entries when r1c1 = 1 has already been constructively proved at the time the UR1.1 pattern is detected? (or, to put it differently, how could two contradictory values be constructively proved if the puzzle is consistent?)
Conclusion: RedEd's proof has an implicit assumption: we must accept any kind of solution, including non constructive ones, e.g. those obtained by recursive backtracking with guessing.
Allan Barker wrote:Proving the missing oracle principle would be very useful ...... If correct, it could indicate the presence of unknown or unintended trial and error in a set of rules or a solver, when the rules or solver is able to eliminate candidates from a UR or isolate any of the puzzle's solutions.
denis_berthier wrote:What I've done is build a conceptual framework based on first order logic that gives a precise meaning to this expression. In particular, in this framework, a solution has to be built constructively (the framework is thus based on constructive logic), each candidate being deleted and each value being added by repeated applications of resolution rules. AFAIK, no other proposal has ever been made of any alternative interpretation of "pure logic" solution.
Glyn wrote:Wow this is still running.
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests