Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 9 8 123 ! 7 6 123 ! 5 14 1234 !
! 7 123 5 ! 4 123 9 ! 8 16 1236 !
! 123 4 6 ! 123 12358 12358 ! 1237 179 12379 !
+-------------------------+-------------------------+-------------------------+
! 6 9 123 ! 8 123 7 ! 1234 145 12345 !
! 123 5 7 ! 1239 4 6 ! 123 8 1239 !
! 8 123 4 ! 5 1239 123 ! 1237 1679 123679 !
+-------------------------+-------------------------+-------------------------+
! 4 1267 8 ! 126 1257 125 ! 9 3 157 !
! 1235 1237 1239 ! 1239 1235789 4 ! 6 157 1578 !
! 135 1367 139 ! 1369 135789 1358 ! 147 2 14578 !
+-------------------------+-------------------------+-------------------------+
187 candidates.
hidden-pairs-in-a-row: r3{n5 n8}{c5 c6} ==> r3c6≠3, r3c6≠2, r3c6≠1, r3c5≠3, r3c5≠2, r3c5≠1
whip[5]: r3n9{c8 c9} - b6n9{r6c9 r6c8} - c8n7{r6 r8} - c9n7{r9 r6} - r6n6{c9 .} ==> r3c8≠1
+-------------------------+-------------------------+-------------------------+
! 9 8 123 ! 7 6 123 ! 5 14 1234 !
! 7 123 5 ! 4 123 9 ! 8 16 1236 !
! 123 4 6 ! 123 58 58 ! 1237 79 12379 !
+-------------------------+-------------------------+-------------------------+
! 6 9 123 ! 8 123 7 ! 1234 145 12345 !
! 123 5 7 ! 1239 4 6 ! 123 8 1239 !
! 8 123 4 ! 5 1239 123 ! 1237 1679 123679 !
+-------------------------+-------------------------+-------------------------+
! 4 1267 8 ! 126 1257 125 ! 9 3 157 !
! 1235 1237 1239 ! 1239 1235789 4 ! 6 157 1578 !
! 135 1367 139 ! 1369 135789 1358 ! 147 2 14578 !
+-------------------------+-------------------------+-------------------------+
tridagon type diag for digits 1, 2 and 3 in blocks:
b5, with cells: r5c4 (target cell), r4c5, r6c6
b4, with cells: r5c1, r4c3, r6c2
b2, with cells: r3c4, r2c5, r1c6
b1, with cells: r3c1, r2c2, r1c3
==> r5c4≠1,2,3
naked-single ==> r5c4=9
hidden-pairs-in-a-block: b6{n6 n9}{r6c8 r6c9} ==> r6c9≠7, r6c9≠3, r6c9≠2, r6c9≠1, r6c8≠7, r6c8≠1
hidden-single-in-a-block ==> r6c7=7
hidden-pairs-in-a-block: b3{n7 n9}{r3c8 r3c9} ==> r3c9≠3, r3c9≠2, r3c9≠1
naked-triplets-in-a-column: c5{r2 r4 r6}{n1 n2 n3} ==> r9c5≠3, r9c5≠1, r8c5≠3, r8c5≠2, r8c5≠1, r7c5≠2, r7c5≠1
Final resolution state:
+-------------------+-------------------+-------------------+
! 9 8 123 ! 7 6 123 ! 5 14 1234 !
! 7 123 5 ! 4 123 9 ! 8 16 1236 !
! 123 4 6 ! 123 58 58 ! 123 79 79 !
+-------------------+-------------------+-------------------+
! 6 9 123 ! 8 123 7 ! 1234 145 12345 !
! 123 5 7 ! 9 4 6 ! 123 8 123 !
! 8 123 4 ! 5 123 123 ! 7 69 69 !
+-------------------+-------------------+-------------------+
! 4 1267 8 ! 126 57 125 ! 9 3 157 !
! 1235 1237 1239 ! 123 5789 4 ! 6 157 1578 !
! 135 1367 139 ! 136 5789 1358 ! 14 2 14578 !
+-------------------+-------------------+-------------------+
If that is true, it might be the first sub-10-SER not in T&E(2) (it is 9.7 skfr).denis_berthier wrote:After applying the Tridagon elimination rule, it remains in T&E(W2, 2)
.------------------.-----------------.------------------.
| 9 8 123 | 7 6 123 | 5 14 1234 |
| 7 123 5 | 4 123 9 | 8 z16 z1236 |
| 123 4 6 | 123 58 58 | 123 79 79 |
:------------------+-----------------+------------------:
| 6 9 x123 | 8 z123 7 | 1234 145 12345 |
|y123 5 7 | 9 4 6 | 123 8 123 |
| 8 z123 4 | 5 123 123 | 7 69 69 |
:------------------+-----------------+------------------:
| 4 1267 8 | 126 57 125 | 9 3 157 |
| 1235 1237 1239 | 123 5789 4 | 6 157 1578 |
| 135 1367 139 | 136 5789 1358 | 14 2 14578 |
'------------------'-----------------'------------------'
.------------------.-----------------.------------------.
| 9 8 ayz | 7 6 123 | 5 14-y 1234-y|
| 7 123 5 | 4 123 9 | 8 z6 z6 |
|bxz 4 6 | 123 58 58 |cxy 79 79 |
:------------------+-----------------+------------------:
| 6 9 x | 8 z 7 | 1234 145 12345 |
| y 5 7 | 9 4 6 | 123 8 123 |
| 8 z 4 | 5 123 123 | 7 69 69 |
:------------------+-----------------+------------------:
| 4 1267 8 | 126 57 125 | 9 3 157 |
| 1235 1237 1239 | 123 5789 4 | 6 157 1578 |
| 135 1367 139 | 136 5789 1358 | 14 2 14578 |
'------------------'-----------------'------------------'
.------------------.-----------------.------------------.
| 9 8 yz | 7 6 123 | 5 14 1234 |
| 7 123 5 | 4 123 9 | 8 z6 z6 |
| xz 4 6 | 123 58 58 | y 79 79 |
:------------------+-----------------+------------------:
| 6 9 x | 8 z123 7 | 1234 145 12345 |
| y 5 7 | 9 4 6 | 123 8 xz1–23 |
| 8 z 4 | 5 123 123 | 7 69 69 |
:------------------+-----------------+------------------:
| 4 1267 8 | 126 57 125 | 9 3 157 |
| 1235 1237 1239 | 123 5789 4 | 6 157 1578 |
| 135 1367 139 | 136 5789 1358 |xz1–4 2 14578 |
'------------------'-----------------'------------------'
987......6..95.....4.......3..5.261.2..31........96.32...26.5.9...1....3....3.12.
.----------------------.-----------------.-------------------.
| 9 8 7 |#46 #24 134 | 234 #456 1456 |
| 6 123 123 | 9 5 13478 | 23478 478 1478 |
| 15 4 1235 |#678 #278 1378 | 23789 #6789 1678 |
:----------------------+-----------------+-------------------:
| 3 79 489 | 5 #478 2 | 6 1 #478 |
| 2 67 468 | 3 1 478 | 4789 #59 4578 |
| 14578 157 1458 |#478 9 6 |#478 3 2 |
:----------------------+-----------------+-------------------:
| 1478 137 1348 | 2 6 #478 | 5 #478 9 |
| 4578 25679 245689 | 1 #478 59 |#478 #4678 3 |
| 4578 5679 45689 |#478 3 59 | 1 2 6–478|
'----------------------'-----------------'-------------------'
.----------------------.-----------------.-------------------.
| 9 8 7 | 46 24 134 | 234 x45 1456 |
| 6 123 123 | 9 5 13478 | 23478 478 1478 |
| 15 4 1235 | 678 278 1378 | 23789 x789 1678 |
:----------------------+-----------------+-------------------:
| 3 79 489 | 5 a478 2 | 6 1 478 |
| 2 67 468 | 3 1 478 | 4789 59 4578 |
| 14578 157 1458 |b478 9 6 | 478 3 2 |
:----------------------+-----------------+-------------------:
| 1478 137 1348 | 2 6 478 | 5 478 9 |
| 4578 25679 245689 | 1 478 59 |a478 6 3 |
| 4578 5679 45689 | 478 3 59 | 1 2 b478 |
'----------------------'-----------------'-------------------'
marek stefanik wrote:If that is true, it might be the first sub-10-SER not in T&E(2) (it is 9.7 skfr).denis_berthier wrote:After applying the Tridagon elimination rule, it remains in T&E(W2, 2)
marek stefanik wrote:My first instinct was to relabel in b5,
+-------+-------+-------+
! . 2 3 ! . . . ! . 8 9 !
! 4 . 6 ! . . . ! . . . !
! 7 8 . ! . . . ! . . . !
+-------+-------+-------+
! . . . ! . . 5 ! . 9 . !
! . . . ! 9 2 . ! . 5 1 !
! . . . ! 3 . 1 ! 2 . 8 !
+-------+-------+-------+
! 3 . . ! 5 . . ! . 1 . !
! . . . ! 8 9 . ! . 2 3 !
! . . . ! . 1 3 ! . . 5 !
+-------+-------+-------+
.23....894.6......78............5.9....92..51...3.12.83..5...1....89..23....13..5;11,7;10,6;2,6;28;269;;;;;;;;;;;;;;
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 15 2 3 ! 1467 4567 467 ! 14567 8 9 !
! 4 159 6 ! 127 3578 2789 ! 157 37 27 !
! 7 8 159 ! 1246 3456 2469 ! 1456 346 246 !
+-------------------+-------------------+-------------------+
! 1268 13467 12478 ! 467 4678 5 ! 3467 9 467 !
! 68 3467 478 ! 9 2 4678 ! 3467 5 1 !
! 569 45679 4579 ! 3 467 1 ! 2 467 8 !
+-------------------+-------------------+-------------------+
! 3 4679 24789 ! 5 467 2467 ! 46789 1 467 !
! 156 14567 1457 ! 8 9 467 ! 467 2 3 !
! 2689 4679 24789 ! 2467 1 3 ! 46789 467 5 !
+-------------------+-------------------+-------------------+
194 candidates.
hidden-pairs-in-a-column: c7{n8 n9}{r7 r9} ==> r9c7≠7, r9c7≠6, r9c7≠4, r7c7≠7, r7c7≠6, r7c7≠4
whip[4]: r7n2{c6 c3} - r7n8{c3 c7} - r7n9{c7 c2} - r2n9{c2 .} ==> r2c6≠2
whip[5]: c1n9{r6 r9} - c1n2{r9 r4} - c1n8{r4 r5} - c6n8{r5 r2} - r2n9{c6 .} ==> r6c2≠9
whip[5]: r2n9{c2 c6} - r2n8{c6 c5} - c5n3{r2 r3} - c5n5{r3 r1} - r1c1{n5 .} ==> r2c2≠1
whip[8]: r5c1{n6 n8} - c6n8{r5 r2} - r2n9{c6 c2} - r3n9{c3 c6} - c6n2{r3 r7} - r9n2{c4 c3} - r9n9{c3 c7} - r9n8{c7 .} ==> r9c1≠6
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE in resolution state: *****
+-------------------+-------------------+-------------------+
! 15 2 3 ! 1467 4567 467 ! 14567 8 9 !
! 4 59 6 ! 127 3578 789 ! 157 37 27 !
! 7 8 159 ! 1246 3456 2469 ! 1456 346 246 !
+-------------------+-------------------+-------------------+
! 1268 13467 12478 ! 467 4678 5 ! 3467 9 467 !
! 68 3467 478 ! 9 2 4678 ! 3467 5 1 !
! 569 4567 4579 ! 3 467 1 ! 2 467 8 !
+-------------------+-------------------+-------------------+
! 3 4679 24789 ! 5 467 2467 ! 89 1 467 !
! 156 14567 1457 ! 8 9 467 ! 467 2 3 !
! 289 4679 24789 ! 2467 1 3 ! 89 467 5 !
+-------------------+-------------------+-------------------+
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 4, 6 and 7 in cells r9c8, r8c7 and r7c9,
the resolution state is:
+----------------------+----------------------+----------------------+
! 15 2 3 ! 1467 4675 467 ! 14675 8 9 !
! 467 59 467 ! 12467 354678 46789 ! 15467 3467 2467 !
! 467 8 159 ! 12467 34675 24679 ! 14675 3467 2467 !
+----------------------+----------------------+----------------------+
! 124678 13467 124678 ! 467 4678 5 ! 3467 9 467 !
! 4678 3467 4678 ! 9 2 4678 ! 3467 5 1 !
! 54679 4675 46759 ! 3 467 1 ! 2 467 8 !
+----------------------+----------------------+----------------------+
! 3 4679 246789 ! 5 467 2467 ! 89 1 7 !
! 15467 14675 14675 ! 8 9 467 ! 6 2 3 !
! 289 4679 246789 ! 2467 1 3 ! 89 4 5 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
DON''T FORGET TO DO THE RELEVANT DIGIT REPLACEMENTS AT THE END, based on the original givens.
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 15 2 3 ! 1467 4567 467 ! 1457 8 9 !
! 467 59 467 ! 1247 34578 4789 ! 1457 367 246 !
! 467 8 159 ! 1247 3457 2479 ! 1457 367 246 !
+----------------------+----------------------+----------------------+
! 124678 13467 124678 ! 467 4678 5 ! 347 9 46 !
! 4678 3467 4678 ! 9 2 4678 ! 347 5 1 !
! 45679 4567 45679 ! 3 467 1 ! 2 67 8 !
+----------------------+----------------------+----------------------+
! 3 469 24689 ! 5 46 246 ! 89 1 7 !
! 1457 1457 1457 ! 8 9 47 ! 6 2 3 !
! 289 679 26789 ! 267 1 3 ! 89 4 5 !
+----------------------+----------------------+----------------------+
188 candidates.
z-chain[3]: b1n4{r2c3 r3c1} - c9n4{r3 r4} - c4n4{r4 .} ==> r2c5≠4, r2c6≠4
z-chain[3]: r1n4{c6 c7} - c9n4{r2 r4} - c4n4{r4 .} ==> r3c5≠4, r3c6≠4
z-chain[4]: r4c9{n4 n6} - r4c4{n6 n7} - r6c5{n7 n6} - r7c5{n6 .} ==> r4c5≠4
z-chain[4]: r4c9{n6 n4} - r4c4{n4 n7} - r6c5{n7 n4} - r7c5{n4 .} ==> r4c5≠6
z-chain[5]: r7c5{n4 n6} - r6c5{n6 n7} - r6c8{n7 n6} - r4c9{n6 n4} - c4n4{r4 .} ==> r1c5≠4
whip[5]: b8n7{r8c6 r9c4} - b8n2{r9c4 r7c6} - c6n6{r7 r5} - r4c4{n6 n4} - b2n4{r1c4 .} ==> r1c6≠7
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c3≠6
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c2≠6
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c1≠6
whip[5]: r1c6{n6 n4} - c4n4{r1 r4} - r6c5{n4 n7} - r6c8{n7 n6} - r4c9{n6 .} ==> r1c5≠6
hidden-pairs-in-a-column: c5{n4 n6}{r6 r7} ==> r6c5≠7
whip[3]: r1c6{n6 n4} - b8n4{r7c6 r7c5} - r6c5{n4 .} ==> r5c6≠6
whip[1]: r5n6{c3 .} ==> r6c1≠6, r6c2≠6, r6c3≠6
z-chain[3]: r6n4{c3 c5} - b5n6{r6c5 r4c4} - r4c9{n6 .} ==> r4c3≠4, r4c2≠4, r4c1≠4
z-chain[5]: b5n7{r4c5 r5c6} - r8c6{n7 n4} - c5n4{r7 r6} - r6n6{c5 c8} - r6n7{c8 .} ==> r4c3≠7, r4c2≠7, r4c1≠7
z-chain[5]: b1n7{r2c3 r3c1} - c8n7{r3 r6} - r6n6{c8 c5} - c5n4{r6 r7} - r8c6{n4 .} ==> r2c6≠7
z-chain[5]: r1n7{c5 c7} - c8n7{r2 r6} - r6n6{c8 c5} - c5n4{r6 r7} - r8c6{n4 .} ==> r3c6≠7
whip[4]: c6n7{r8 r5} - r4n7{c4 c7} - r4n3{c7 c2} - c2n1{r4 .} ==> r8c2≠7
biv-chain[5]: r9c7{n9 n8} - r7n8{c7 c3} - r7n2{c3 c6} - r3c6{n2 n9} - b1n9{r3c3 r2c2} ==> r9c2≠9
biv-chain[5]: b5n8{r4c5 r5c6} - r2c6{n8 n9} - r3c6{n9 n2} - r7n2{c6 c3} - b4n2{r4c3 r4c1} ==> r4c1≠8
z-chain[5]: r7c5{n6 n4} - r7c2{n4 n9} - r2n9{c2 c6} - r3c6{n9 n2} - r7n2{c6 .} ==> r7c3≠6
z-chain[5]: r7c5{n4 n6} - r7c2{n6 n9} - r2n9{c2 c6} - r3c6{n9 n2} - r7n2{c6 .} ==> r7c3≠4
whip[6]: c2n1{r8 r4} - r4c1{n1 n2} - r4c3{n2 n8} - c5n8{r4 r2} - r2c6{n8 n9} - r2c2{n9 .} ==> r8c2≠5
biv-chain[3]: c2n5{r6 r2} - b1n9{r2c2 r3c3} - b4n9{r6c3 r6c1} ==> r6c1≠5
z-chain[4]: c6n7{r8 r5} - c2n7{r5 r6} - c2n5{r6 r2} - c1n5{r1 .} ==> r8c1≠7
z-chain[5]: b8n7{r8c6 r9c4} - c2n7{r9 r6} - c2n5{r6 r2} - r2n9{c2 c6} - c6n8{r2 .} ==> r5c6≠7
hidden-single-in-a-column ==> r8c6=7
whip[1]: r8n4{c3 .} ==> r7c2≠4
whip[1]: b5n7{r4c5 .} ==> r4c7≠7
biv-chain[3]: r2n2{c9 c4} - r9c4{n2 n6} - r4n6{c4 c9} ==> r2c9≠6
biv-chain[4]: r6c8{n7 n6} - c5n6{r6 r7} - r7c2{n6 n9} - c1n9{r9 r6} ==> r6c1≠7
z-chain[4]: r6n4{c3 c5} - r6n6{c5 c8} - b6n7{r6c8 r5c7} - r5n3{c7 .} ==> r5c2≠4
biv-chain[3]: c2n4{r8 r6} - c2n5{r6 r2} - c1n5{r1 r8} ==> r8c1≠4
naked-pairs-in-a-column: c1{r1 r8}{n1 n5} ==> r4c1≠1
naked-single ==> r4c1=2
naked-pairs-in-a-row: r9{c1 c7}{n8 n9} ==> r9c3≠9, r9c3≠8
biv-chain[4]: r1c5{n5 n7} - r4c5{n7 n8} - r4c3{n8 n1} - b1n1{r3c3 r1c1} ==> r1c1≠5
singles ==> r1c1=1, r8c1=5
biv-chain[4]: b1n5{r3c3 r2c2} - r2n9{c2 c6} - r2n8{c6 c5} - b2n3{r2c5 r3c5} ==> r3c5≠5
z-chain[3]: r2n3{c8 c5} - r3c5{n3 n7} - b1n7{r3c1 .} ==> r2c8≠7
biv-chain[5]: c2n5{r2 r6} - c2n4{r6 r8} - c2n1{r8 r4} - r4c3{n1 n8} - c5n8{r4 r2} ==> r2c5≠5
hidden-single-in-a-block ==> r1c5=5
hidden-pairs-in-a-block: b3{n1 n5}{r2c7 r3c7} ==> r3c7≠7, r3c7≠4, r2c7≠7, r2c7≠4
biv-chain[4]: r3c6{n2 n9} - r3c3{n9 n5} - c7n5{r3 r2} - r2n1{c7 c4} ==> r2c4≠2
hidden-single-in-a-row ==> r2c9=2
naked-quads-in-a-row: r3{c1 c5 c8 c9}{n4 n7 n3 n6} ==> r3c4≠7, r3c4≠4
z-chain[4]: r3n4{c1 c9} - c9n6{r3 r4} - b5n6{r4c4 r6c5} - r6n4{c5 .} ==> r5c1≠4
biv-chain[5]: r6c1{n9 n4} - c2n4{r6 r8} - c2n1{r8 r4} - r4c3{n1 n8} - b7n8{r7c3 r9c1} ==> r9c1≠9
singles ==> r9c1=8, r9c7=9, r7c7=8, r6c1=9
whip[1]: c1n4{r3 .} ==> r2c3≠4
biv-chain[4]: r5c1{n6 n7} - c7n7{r5 r1} - b3n4{r1c7 r3c9} - c1n4{r3 r2} ==> r2c1≠6
biv-chain[4]: r2n6{c3 c8} - r2n3{c8 c5} - r2n8{c5 c6} - r5n8{c6 c3} ==> r5c3≠6
biv-chain[5]: r6c8{n7 n6} - c5n6{r6 r7} - r7c2{n6 n9} - c3n9{r7 r3} - c3n5{r3 r6} ==> r6c3≠7
biv-chain[5]: r2n6{c3 c8} - r2n3{c8 c5} - b2n8{r2c5 r2c6} - r2n9{c6 c2} - r7c2{n9 n6} ==> r9c3≠6
singles ==> r2c3=6, r2c8=3, r3c5=3, r5c1=6
biv-chain[5]: r5n8{c3 c6} - r2c6{n8 n9} - c2n9{r2 r7} - c2n6{r7 r9} - r9n7{c2 c3} ==> r5c3≠7
stte
123756489
756489132
489132576
218675394
634928751
975341268
392564817
541897623
867213945
+-------------------------------+-------------------------------+
! 123 . . ! 123 . . !
! . 123 . ! . 123 . !
! . . 123 ! . . 123 !
+-------------------------------+-------------------------------+
! 123 . . ! . . 123 !
! . 123 . ! . 123 . !
! . . 123 ! 123 . . !
+-------------------------------+-------------------------------+
+-------------------------------+-------------------------------+-------------------------------+
! 123 123456789 123456789 ! 123 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123 123456789 ! 123456789 123 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123456789 123456789 !
! 123456789 123 123456789 ! 123456789 123 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
+-------------------------------+-------------------------------+-------------------------------+
! 1 123456789 123456789 ! 123 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 2 123456789 ! 123456789 123 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 3 ! 123456789 123456789 123 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123456789 123456789 !
! 123456789 123 123456789 ! 123456789 123 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
biv-chain[3]: r1c4{n2 n3} - r2c5{n3 n1} - r3c6{n1 n2} ==> r1c5≠2, r1c6≠2, r3c4≠2, r3c5≠2
biv-chain[3]: r1c4{n3 n2} - r3c6{n2 n1} - r2c5{n1 n3} ==> r1c5≠3, r1c6≠3, r2c4≠3, r2c6≠3
biv-chain[3]: r2c5{n1 n3} - r1c4{n3 n2} - r3c6{n2 n1} ==> r2c4≠1, r2c6≠1, r3c4≠1, r3c5≠1
biv-chain[3]: r4c1{n2 n3} - r5c2{n3 n1} - r6c3{n1 n2} ==> r4c3≠2, r5c1≠2, r5c3≠2, r6c1≠2
biv-chain[3]: r4c1{n3 n2} - r6c3{n2 n1} - r5c2{n1 n3} ==> r4c2≠3, r5c1≠3, r6c1≠3, r6c2≠3
biv-chain[3]: r5c2{n1 n3} - r4c1{n3 n2} - r6c3{n2 n1} ==> r4c2≠1, r4c3≠1, r5c3≠1, r6c2≠1
z-chain[4]: b4n1{r6c3 r5c2} - b4n3{r5c2 r4c1} - r4c6{n3 n2} - r3c6{n2 .} ==> r6c6≠1
z-chain[4]: b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c4{n1 n2} - r1c4{n2 .} ==> r4c4≠3
z-chain[4]: r4c1{n2 n3} - r4c6{n3 n1} - r6c4{n1 n3} - r1c4{n3 .} ==> r4c4≠2
z-chain[4]: r6c3{n2 n1} - r6c4{n1 n3} - r4c6{n3 n1} - r3c6{n1 .} ==> r6c6≠2
z-chain[5]: b4n1{r6c3 r5c2} - b4n3{r5c2 r4c1} - r4c6{n3 n2} - r5c5{n2 n3} - r2c5{n3 .} ==> r6c5≠1
z-chain[5]: b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c4{n1 n2} - r5c5{n2 n1} - r2c5{n1 .} ==> r4c5≠3
z-chain[5]: b4n2{r6c3 r4c1} - b4n3{r4c1 r5c2} - r5c5{n3 n1} - b2n1{r2c5 r3c6} - b2n2{r3c6 .} ==> r6c4≠2
biv-chain[3]: r6c4{n1 n3} - r1c4{n3 n2} - r3c6{n2 n1} ==> r4c6≠1, r5c6≠1
biv-chain[2]: r4c6{n3 n2} - r4c1{n2 n3} ==> r4c7≠3, r4c8≠3, r4c9≠3
biv-chain[2]: r4c1{n2 n3} - r4c6{n3 n2} ==> r4c7≠2, r4c8≠2, r4c9≠2, r4c5≠2
biv-chain[3]: b4n2{r6c3 r4c1} - r4c6{n2 n3} - r6c4{n3 n1} ==> r6c3≠1
singles ==> r6c3=2, r4c1=3, r4c6=2, r3c6=1, r2c5=3, r1c4=2, r5c5=1
GRID 0 HAS NO SOLUTION : NO CANDIDATE FOR FOR BN-CELL b4n1
........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3. ED=10.4/7.2/2.6
mith wrote:I'll be curious to see if any of the new ones defeat the replacement technique. I have at least one example of a puzzle with guardians in all four boxes after singles (or basics even), but after some short chains it's down to just two..
- Code: Select all
........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3. ED=10.4/7.2/2.6
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 4789 24679 2468 ! 35789 36789 346789 ! 5789 6789 1 !
! 1789 679 168 ! 5789 6789 2 ! 3 4 56789 !
! 4789 3 5 ! 789 1 46789 ! 789 26789 26789 !
+----------------------+----------------------+----------------------+
! 1789 279 1238 ! 4 23789 3789 ! 6 5 789 !
! 45789 4579 48 ! 6 789 1 ! 2 789 3 !
! 6 279 238 ! 3789 23789 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 7 ! 12389 4 3689 ! 189 2689 2689 !
! 34 8 9 ! 1237 5 367 ! 147 267 2467 !
! 2 1 46 ! 789 6789 6789 ! 45789 3 456789 !
+----------------------+----------------------+----------------------+
215 candidates
Resolution state:
+----------------+----------------+----------------+
! 789 24 24 ! 3 6789 6789 ! 5 789 1 !
! 1789 679 168 ! 5 789 2 ! 3 4 789 !
! 789 3 5 ! 789 1 4 ! 789 26 26 !
+----------------+----------------+----------------+
! 1789 279 1238 ! 4 23 789 ! 6 5 789 !
! 45 4579 48 ! 6 789 1 ! 2 789 3 !
! 6 279 238 ! 789 23 5 ! 4789 1 4789 !
+----------------+----------------+----------------+
! 35 56 7 ! 12 4 36 ! 189 289 289 !
! 34 8 9 ! 12 5 37 ! 147 267 2467 !
! 2 1 46 ! 789 6789 6789 ! 47 3 5 !
+----------------+----------------+----------------+
+----------------------+----------------------+----------------------+
! 789 24 24 ! 3 6789 6789 ! 5 7 1 !
! 1789 6789 16789 ! 5 789 2 ! 3 4 8 !
! 789 3 5 ! 789 1 4 ! 9 26 26 !
+----------------------+----------------------+----------------------+
! 1789 2789 123789 ! 4 23 789 ! 6 5 789 !
! 45 45789 4789 ! 6 789 1 ! 2 789 3 !
! 6 2789 23789 ! 789 23 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 789 ! 12 4 36 ! 1789 2789 2789 !
! 34 789 789 ! 12 5 3789 ! 14789 26789 246789 !
! 2 1 46 ! 789 6789 6789 ! 4789 3 5 !
+----------------------+----------------------+----------------------+
+-------------------+-------------------+-------------------+
! 89 24 24 ! 3 689 689 ! 5 7 1 !
! 179 679 169 ! 5 79 2 ! 3 4 8 !
! 78 3 5 ! 78 1 4 ! 9 26 26 !
+-------------------+-------------------+-------------------+
! 179 2789 12389 ! 4 23 89 ! 6 5 79 !
! 45 4578 4789 ! 6 789 1 ! 2 89 3 !
! 6 2789 2379 ! 789 23 5 ! 48 1 479 !
+-------------------+-------------------+-------------------+
! 35 56 789 ! 12 4 36 ! 178 289 29 !
! 34 789 789 ! 12 5 378 ! 147 268 2469 !
! 2 1 46 ! 89 68 6789 ! 478 3 5 !
+-------------------+-------------------+-------------------+
+----------------------+----------------------+----------------------+
! 789 24 24 ! 3 6789 6789 ! 5 789 1 !
! 1789 6789 16789 ! 5 789 2 ! 3 4 789 !
! 789 3 5 ! 789 1 4 ! 789 26 26 !
+----------------------+----------------------+----------------------+
! 1789 2789 123789 ! 4 23 9 ! 6 5 789 !
! 45 45789 4789 ! 6 8 1 ! 2 789 3 !
! 6 2789 23789 ! 7 23 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 789 ! 12 4 36 ! 1789 2789 2789 !
! 34 789 789 ! 12 5 3789 ! 14789 26789 246789 !
! 2 1 46 ! 789 6789 6789 ! 4789 3 5 !
+----------------------+----------------------+----------------------+
.......12.....34.5..514.6......6.3...2.35..6..6.4.1.5..1.23....7.8......932....4. ED=10.7/10.7/2.6
.------------------.-------------------.------------------.
| 3468 4789 347 | 568 789 56 | 789 1 2 |
| 126 789 16 | 6789 29 3 | 4 789 5 |
| 28 789 5 | 1 4 2789 | 6 37 3789 |
:------------------+-------------------+------------------:
| 1458 4578 1479 | 789 6 29 | 3 2789 14 |
| 148 2 1479 | 3 5 789 | 789 6 14 |
| 38 6 379 | 4 2789 1 | 28 5 789 |
:------------------+-------------------+------------------:
| 456 1 46 | 2 3 45789 | 5789 789 789 |
| 7 45 8 | 569 19 4569 | 1259 23 36 |
| 9 3 2 | 578 178 5678 | 1578 4 67 |
'------------------'-------------------'------------------'
+----------------+----------------+----------------+
| 346 4789 34 | 568 789 56 | 789 1 2 |
| 26 789 1 | 6789 29 3 | 4 789 5 |
| 28 789 5 | 1 4 2789 | 6 37 3789 |
+----------------+----------------+----------------+
| 1458 58 479 | 789 6 29 | 3 2789 14 |
| 148 2 479 | 3 5 789 | 79 6 14 |
| 38 6 379 | 4 2789 1 | 28 5 789 |
+----------------+----------------+----------------+
| 45 1 6 | 2 3 47 | 5789 789 789 |
| 7 45 8 | 569 19 4569 | 125 23 36 |
| 9 3 2 | 578 178 5678 | 15 4 67 |
+----------------+----------------+----------------+ 11.7, Contradiction Forcing Chain: r5c7.8 on ==> r4c8.9 both on & off
mith wrote:Try this one:
- Code: Select all
.......12.....34.5..514.6......6.3...2.35..6..6.4.1.5..1.23....7.8......932....4. ED=10.7/10.7/2.6
This isn't particularly hard with the trivalue oddagon (all guardians lead to 2r3c6, and stte from there), but it should be harder to get to a point where you can apply replacement.
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 3468 4789 34679 ! 56789 789 56789 ! 789 1 2 !
! 1268 789 1679 ! 6789 2789 3 ! 4 789 5 !
! 28 789 5 ! 1 4 2789 ! 6 3789 3789 !
+-------------------+-------------------+-------------------+
! 1458 45789 1479 ! 789 6 2789 ! 3 2789 14789 !
! 148 2 1479 ! 3 5 789 ! 1789 6 14789 !
! 38 6 379 ! 4 2789 1 ! 2789 5 789 !
+-------------------+-------------------+-------------------+
! 456 1 46 ! 2 3 45789 ! 5789 789 789 !
! 7 45 8 ! 569 19 4569 ! 1259 239 1369 !
! 9 3 2 ! 5678 178 5678 ! 1578 4 1678 !
+-------------------+-------------------+-------------------+
193 candidates.
(solve-sukaku-grid-by-eleven-replacement 7 8 9
1 7
2 8
3 9
+-------------------+-------------------+-------------------+
! 3468 4789 34679 ! 56789 789 56789 ! 789 1 2 !
! 1268 789 1679 ! 6789 2789 3 ! 4 789 5 !
! 28 789 5 ! 1 4 2789 ! 6 3789 3789 !
+-------------------+-------------------+-------------------+
! 1458 45789 1479 ! 789 6 2789 ! 3 2789 14789 !
! 148 2 1479 ! 3 5 789 ! 1789 6 14789 !
! 38 6 379 ! 4 2789 1 ! 2789 5 789 !
+-------------------+-------------------+-------------------+
! 456 1 46 ! 2 3 45789 ! 5789 789 789 !
! 7 45 8 ! 569 19 4569 ! 1259 239 1369 !
! 9 3 2 ! 5678 178 5678 ! 1578 4 1678 !
+-------------------+-------------------+-------------------+
)
+----------------------+----------------------+----------------------+
! 346789 4789 346789 ! 56789 789 56789 ! 7 1 2 !
! 126789 789 16789 ! 6789 2789 3 ! 4 8 5 !
! 2789 789 5 ! 1 4 2789 ! 6 3789 9 !
+----------------------+----------------------+----------------------+
! 145789 45789 14789 ! 789 6 2789 ! 3 2789 14789 !
! 14789 2 14789 ! 3 5 789 ! 1789 6 14789 !
! 3789 6 3789 ! 4 2789 1 ! 2789 5 789 !
+----------------------+----------------------+----------------------+
! 456 1 46 ! 2 3 45789 ! 5789 789 789 !
! 789 45 789 ! 56789 1789 456789 ! 125789 23789 136789 !
! 789 3 2 ! 56789 1789 56789 ! 15789 4 16789 !
+----------------------+----------------------+----------------------+
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 34689 489 34689 ! 5689 89 5689 ! 7 1 2 !
! 12679 79 1679 ! 679 279 3 ! 4 8 5 !
! 278 78 5 ! 1 4 278 ! 6 3 9 !
+----------------------+----------------------+----------------------+
! 145789 45789 14789 ! 789 6 2789 ! 3 279 1478 !
! 14789 2 14789 ! 3 5 789 ! 89 6 1478 !
! 3789 6 3789 ! 4 2789 1 ! 289 5 78 !
+----------------------+----------------------+----------------------+
! 456 1 46 ! 2 3 45789 ! 589 79 78 !
! 789 45 789 ! 56789 1789 456789 ! 12589 279 3 !
! 789 3 2 ! 5789 1789 5789 ! 1589 4 6 !
+----------------------+----------------------+----------------------+
181 candidates.
.--------------------.--------------------.-------------------.
| 3468 4789 34679 | 56789 789 56789 | 789 1 2 |
| 1268 789 1679 | 6789 2789 3 | 4 789 5 |
| 28 789 5 | 1 4 2789 | 6 3789 3789 |
:--------------------+--------------------+-------------------:
| 1458 45789 1479 | 789 6 2789 | 3 2789 14789 |
| 148 2 1479 | 3 5 789 | 1789 6 14789 |
| 38 6 379 | 4 2789 1 | 2789 5 789 |
:--------------------+--------------------+-------------------:
| 456 1 46 | 2 3 45789 | 5789 789 789 |
| 7 45 8 | 569 19 4569 | 1259 239 1369 |
| 9 3 2 | 5678 178 5678 | 1578 4 1678 |
'--------------------'--------------------'-------------------'
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests