,-------,-------,-------,
| . . . | 1 . 1 | . . 1 |
| . . . | 1 1 . | 1 . . |
| . . 1 | . . . | . . . |
:-------+-------+-------:
| 1 . . | . . . | . 1 1 |
| . 1 . | . 1 1 | . . . |
| 1 . . | . 1 . | . . 1 |
:-------+-------+-------:
| . 1 . | 1 . . | . 1 . |
| . 1 . | . 1 . | 1 . . |
| 1 . . | 1 . 1 | . . . |
'-------'-------'-------'
3 5 9 6 28 7 1 248 248
128 128 6 1248 5 148 7 3 9
4 7 128 9 128 3 6 28 5
5 1234 123 124 7 9 8 124 6
128 6 7 3 128 148 9 5 124
9 1248 128 1248 6 5 3 7 124
7 189 5 18 4 6 2 189 3
6 1289 4 7 3 128 5 189 18
128 1238 1238 5 9 128 4 6 7
0 0 0 0 3 0 0 4 6
6 4 0 1 0 2 0 0 0
0 0 3 0 7 0 0 3 0
0 0 0 0 0 0 13 0 0
1 0 0 0 3 9 0 0 0
0 6 6 1 0 0 0 0 0
0 0 0 11 0 0 0 2 0
0 0 0 0 0 2 0 4 7
6 3 4 0 0 0 0 0 0
Value: 8
Value Cell: (34)
Candidate Cells: (5 8 9 10 11 13 15 21 23 26 37 41 42 47 48 49 56 58 62 65 69 71 72 73 74 75 78)
Union csets: (5 8 9 10 11 13 15 21 23 26 37 41 42 47 48 49 . 58 62 . 69 71 72 73 74 75 .)
Complementary Sets: 13
(5 10 26 42 47 58 72 75)
(5 10 26 42 48 58 72 74)
(8 10 23 42 47 58 72 75)
(8 10 23 42 48 58 72 74)
(9 10 23 42 47 58 71 75)
(9 10 23 42 48 58 71 74)
(5 11 26 42 48 58 72 73)
(8 11 23 42 48 58 72 73)
(9 11 23 37 49 62 69 75)
(9 11 23 42 48 58 71 73)
(9 13 21 41 47 62 69 73)
(8 15 21 41 47 58 72 73)
(9 15 21 41 47 58 71 73)
Candidate 8 to be eliminated in cells: (56 65 78)
StrmCkr wrote:
- Code: Select all
+------------------------+-----------------------+-------------+
| 3 5 9 | 6 2(8) 7 | 1 248 248 |
| 12(8) 12(8) 6 | 124(8) 5 14(8) | 7 3 9 |
| 4 7 12(8) | 9 12(8) 3 | 6 28 5 |
+------------------------+-----------------------+-------------+
| 5 1234 123 | 124 7 9 | 8 124 6 |
| 12(8) 6 7 | 3 12(8) 14(8) | 9 5 124 |
| 9 124(8) 12(8) | 124(8) 6 5 | 3 7 124 |
+------------------------+-----------------------+-------------+
| 7 19(-8) 5 | 1(8) 4 6 | 2 189 3 |
| 6 129(-8) 4 | 7 3 12(8) | 5 189 18 |
| 12(8) 123(8) 123(8) | 5 9 12(-8) | 4 6 7 |
+------------------------+-----------------------+-------------+
anyone have a proper fish for this construct: i built it with 6* ERI and row 2,9
I've put it threw 3 different solvers and haven't found one for it yet. {might be part of the no fish or nxn+k family }
size 8: fish??
Fish: R29B124578 / r56c123456
doesn't make sense but the eliminations are solid confirmed via xsudo
the elms are solid and easy to check by iterating the 3cells of the ERI in box 5 { all 3 cells lead to the elms}
+------------------------+-----------------------+-------------+
| 3 5 9 | 6 2(8) 7 | 1 248 248 |
| 12(8) 12(8) 6 | 124(8) 5 14(8) | 7 3 9 |
| 4 7 12(8) | 9 12(8) 3 | 6 28 5 |
+------------------------+-----------------------+-------------+
| 5 1234 123 | 124 7 9 | 8 124 6 |
| 12(8) 6 7 | 3 12(8) 14(8) | 9 5 124 |
| 9 124(8) 12(8) | 124(8) 6 5 | 3 7 124 |
+------------------------+-----------------------+-------------+
| 7 19(-8) 5 | 1(8) 4 6 | 2 189 3 |
| 6 129(-8) 4 | 7 3 12(8) | 5 189 18 |
| 12(8) 123(8) 123(8) | 5 9 12(-8) | 4 6 7 |
+------------------------+-----------------------+-------------+
sultan vinegar 2 wrote:Right, let's start with defining the virtual truth set V:
To prevent the negative-rank dark (odd number of conjugate links) loop {r2c1=r2c4=r6c4=r6c23=r5c1=r2c1},
we have V = {r2c26, r7c4, r9c1}, a.k.a. Guardians.
Now, our fish (a virtual finned mutant X-Wing) is:
VB7 / r9c26b8
yup, that would be the oddagon logic or broken-wing citation for no-fish patternswe have V = {r2c26, r7c4, r9c1}, a.k.a. Guardians.
and then by locked candidates, r78c2 <> 8.
yes, that what we did in hodoku for Siamese fish ~ simply added on the 2nd cover sectors/ Finns for the eliminations. As a purest nxn that this thread was intended as the nxn formation for a skyscraper is still 2 Sashimi x-wingsAnd re: the skyscraper, one can write that as a single fish for all four eliminations if one uses two virtual cover sets.
. X . | . . . | * / *
. / . | . . . | . / .
* / * | . . . | . X .
----------+----------+---------
. / . | . . . | . / .
. / . | . . . | . / .
. / . | . . . | . / .
----------+----------+---------
. / . | . . . | . / .
. X . | . . . | . X .
. / . | . . . | . / .
yzfwsf wrote:sultan vinegar 2 wrote:Right, let's start with defining the virtual truth set V:
To prevent the negative-rank dark (odd number of conjugate links) loop {r2c1=r2c4=r6c4=r6c23=r5c1=r2c1},
we have V = {r2c26, r7c4, r9c1}, a.k.a. Guardians.
Now, our fish (a virtual finned mutant X-Wing) is:
VB7 / r9c26b8
If you identify this as a fish, then my solver can find it, but it is called the Oddagon Forcing Chain.
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests