9-- 7-8 -45
47- -95 ---
85- -42 -7-
649 581 723
237 964 158
--- 273 496
7-- 856 -34
--- --9 -67
3-- --7 ---
--- 7-- 8--
--- -4- -3-
--- --9 --1
6-- 5-- ---
-1- -3- -4-
--5 --1 --7
5-- 2-- 6--
-3- -8- -9-
--7 --- --2
Vereth wrote:Which logic must be used for this one?
- Code: Select all
. . . 7 . . 8 . .
. . . . 4 . . 3 .
. . . . . 9 . . 1
6 . . 5 . . . . .
. 1 . . 3 . . 4 .
. . 5 . . 1 . . 7
5 . . 2 . . 6 . .
. 3 . . 8 . . 9 .
. . 7 . . . . . 2
...7..8......4..3......9..16..5......1..3..4...5..1..75..2..6...3..8..9...7.....2
c258 Swordfish (finned) <> 7 [r3c1] -or-
r258 Swordfish (finned) <> 7 [r3c1]
5r3c7 5r5c9 4r8c9 4r3c7 <> 5 [r3c7] (chain)
+--------------------------------------------------------------------------------+
| 12349 24569 123469 | 7 1256 2356 | 8 256 4569 |
| 12789 256789 12689 | 168 4 2568 | 2579 3 569 |
| 2348 245678 23468 | 368 256 9 | 247 2567 1 |
|--------------------------+--------------------------+--------------------------|
| 6 24789 23489 | 5 279 2478 | 1239 128 389 |
| 2789 1 289 | 689 3 2678 | 259 4 5689 |
| 23489 2489 5 | 4689 269 1 | 239 268 7 |
|--------------------------+--------------------------+--------------------------|
| 5 489 1489 | 2 179 347 | 6 178 348 |
| 124 3 1246 | 146 8 4567 | 1457 9 45 |
| 1489 4689 7 | 13469 1569 3456 | 1345 158 2 |
+--------------------------------------------------------------------------------+
...7..8......4.73..7...9..16..57....71..3..4...5..1..75..2..67..3..87.9...7.....2
...7..8...7..4..3......9.716..5.7...71..3..4...5..1..75..27.6...3..8.79...7.....2
...7..8...7..4..3......9.716..57....71..3..4...5..1..75..2.76...3..8.79...7.....2
...7..8...7..4..3......97.16..57....71..3..4...5..1..75..2..67..3..87.9...7.....2 ***
...7..8..7...4..3......9.7167.5......1..37.4...5..1..75..27.6...3..8.79...7.....2
Vereth wrote:Which logic must be used for this one?
000700800000040030000009001600500000010030040005001007500200600030080090007000002
Glyn wrote:Vereth The puzzle you have given is extremely hard. It may be a transformation of an already known puzzle in the hardest puzzles thread, I'm sure someone can easily verify that. It requires nested forcing moves.
daj95376 wrote:
- Code: Select all
...7..8......4..3......9..16..5......1..3..4...5..1..75..2..6...3..8..9...7.....2
c258 Swordfish (finned) <> 7 [r3c1] -or-
r258 Swordfish (finned) <> 7 [r3c1]
5r3c7 5r5c9 4r8c9 4r3c7 <> 5 [r3c7] (chain)
+--------------------------------------------------------------------------------+
| 12349 24569 123469 | 7 1256 2356 | 8 256 4569 |
| 12789 256789 12689 | 168 4 2568 | 2579 3 569 |
| 2348 245678 23468 | 368 256 9 | 247 2567 1 |
|--------------------------+--------------------------+--------------------------|
| 6 24789 23489 | 5 279 2478 | 1239 128 389 |
| 2789 1 289 | 689 3 2678 | 259 4 5689 |
| 23489 2489 5 | 4689 269 1 | 239 268 7 |
|--------------------------+--------------------------+--------------------------|
| 5 489 1489 | 2 179 347 | 6 178 348 |
| 124 3 1246 | 146 8 4567 | 1457 9 45 |
| 1489 4689 7 | 13469 1569 3456 | 1345 158 2 |
+--------------------------------------------------------------------------------+
At this point, just test the five different possibilities for '7'. It may be Brute Force, but is nested forcing chains/nets really any better?
- Code: Select all
...7..8......4.73..7...9..16..57....71..3..4...5..1..75..2..67..3..87.9...7.....2
...7..8...7..4..3......9.716..5.7...71..3..4...5..1..75..27.6...3..8.79...7.....2
...7..8...7..4..3......9.716..57....71..3..4...5..1..75..2.76...3..8.79...7.....2
...7..8...7..4..3......97.16..57....71..3..4...5..1..75..2..67..3..87.9...7.....2 ***
...7..8..7...4..3......9.7167.5......1..37.4...5..1..75..27.6...3..8.79...7.....2
.---------------------.----------------------.---------------------.
| 1349 B25 134-69| 7 A1256 A236 | 8 B256 4-69 |
| 189 257 689 | C18 4 2568 | 279 3 569 |
| 348 257 3468 | C38 256 9 | 247 2567 1 |
:---------------------+----------------------+---------------------:
| 6 489 3489 | 5 7 248 | 1239 128 389 |
| 7 1 2 | 9 3 68 | 5 4 68 |
| 3489 489 5 | 48 26 1 | 239 268 7 |
:---------------------+----------------------+---------------------:
| 5 489 1489 | 2 19 347 | 6 178 348 |
| 2 3 14 | 6 8 457 | 147 9 45 |
| 1489 6 7 | 134 159 345 | 134 158 2 |
'---------------------'----------------------'---------------------'
Sue de Coq: r1c56 - {12356} (r1c28 - {256}, r23c4 - {138}) => r1c39<>6
.------------------.------------------.-------------------.
| 1349 25 39 | 7 125 36 | 8 56 49 |
| 189 27 689 | 18 4 56 | 27 3 59 |
| 348 257 368 | 38 25 9 | 247 567 1 |
:------------------+------------------+-------------------:
| 6 49 349 | 5 7 2 | 39 1 8 |
| 7 1 2 | 9 3 8 | 5 4 6 |
| 389 89 5 | 4 6 1 | 39 2 7 |
:------------------+------------------+-------------------:
| 5 489 1489 | 2 19 47 | 6 C78 3 |
| 2 3 B14 | 6 8 -457 | A147 9 A45 |
| 89 6 7 | 13 59 34 | 14 C58 2 |
'------------------'------------------'-------------------'
Sue de Coq: r8c79 - {1457} (r8c3 - {14}, r79c8 - {578}) => r8c6<>4
Anonymous wrote:Can anyone give me a hand with this puzzle? I've come to the trial and error stage. Logic doesn't seem to work for me....
- Code: Select all
9-- 7-8 -45
47- -95 ---
85- -42 -7-
649 581 723
237 964 158
--- 273 496
7-- 856 -34
--- --9 -67
3-- --7 ---
cheers
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 18 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 29 | 3 | 4 |
-----------------------------------------------------------
| 15 | 128 | 12458 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 1269 | 124568 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 18 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 458 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 4568 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 1 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 1 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | *1* # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| *1* | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
.---------------------.---------------------.---------------------.
| 9 126 1236 | 7 13 8 | 236 4 5 |
| 4 7 1236 | 136 9 5 | 2368 18 12 |
| 8 5 136 | 136 4 2 | 369 7 19 |
:---------------------+---------------------+---------------------:
| 6 4 9 | 5 8 1 | 7 2 3 |
| 2 3 7 | 9 6 4 | 1 5 8 |
| 15 18 158 | 2 7 3 | 4 9 6 |
:---------------------+---------------------+---------------------:
| 7 129 12 | 8 5 6 | 29 3 4 |
| 15 128 12458 | 134 123 9 | 258 6 7 |
| 3 12689 124568| 14 12 7 | 2589 18 129 |
'---------------------'---------------------'---------------------'
Return to Advanced solving techniques
Users browsing this forum: No registered users and 0 guests